
Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

1/19

A join point for loops
in AspectJ

Bruno Harbulot and John Gurd

The University of Manchester

AOSD 2006 – Bonn, March 2006

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

2/19

What we would like to do

● Write aspects that represent the concern:
– “parallelise all the loops iterating from 0 to the

length of an array of int using MPI”,

– or “parallelise all the loops iterating over a
Collection using Java Threads”.

● Write (aspect) code that does not invade
the readability of the numerical code.

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

3/19

Previously, on loops and AspectJ...

● “Using AspectJ to Separate Concerns In
Parallel Scientific Java Code” (AOSD 2004)

● Parallelisation of loops using aspects:
– by making the iteration space visible as

parameters to the methods

– by turning loops into self-contained objects
(loop body and boundaries)

● Both require refactoring the base code

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

4/19

Presentation Outline

● Loop join point model and objectives

● Finding the loops

● Context exposure

● LoopsAJ: prototype implementation

● Related topics

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

5/19

Objective (“strong” form)

● Analogy with Java 5 (Tiger) constructs.
● Collection collec = ...
for (Object item: collec) { ... }

● Object[] array = ...
for (Object item: array) { ... }

● Syntactic sugar for this form:
Object[] array = ...
for (int i=0; i<array.length; i++)
 { ... }

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

6/19

Objective (“weak” form)

● Exposing the data not always necessary.
● Iterator (object or int) may be sufficient.
● for (int i=min ; i<max ; i+=stride)
● Iterator iter = ... ;
while (iter.hasNext()){ ... iter.next() ... }

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

7/19

Finding the loops

● Analysis of the control flow graph, based on
bytecode representation.

● Finding natural and combined loops
● Classification of loops according to their

weaving and analysis capabilities:
– General loops

– Loops with unique successor

– Loops with unique exit node

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

8/19

Control-flow graph, dominators
and natural loops (I)

● A node is a basic block (only entry via its
head and only exit via its tail).

● Node d dominates node n if every path from
the beginning to n goes through d.

● A back edge (a -> b) is an edge whose head
(b) dominates its tail (a).

● Given a back edge n -> d, the natural loop is
d plus the set of nodes that can reach n
without going through d.

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

9/19

Control-flow graph, dominators
and natural loops (II)

for (int i = 0 ; i<MAX ; i ++) {

 /* A */

}

int j = 0 ;

int STRIDE = 1 ;

for (; j < MAX ; j+=STRIDE) {

 /* A */

}

int k = 0 ;

while (k < MAX) {

 /* A */

 k ++ ;

}

1

2

3 4

i=0;

if (i<MAX)

/* A */
i++; return;

1

2

3 4

Control-flow graph

Dominator tree

B
a
ck

 e
d
g
e

Natural Loop

Header

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

10/19

Loop categories (I)
General case

● Always possible to define “before”
● Inserting a pre-header

header pre-header

header

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

11/19

Loop categories (II)
Successor(s) and exit(s)

● iloop:
for (int i=0; i<MAXI; i++) {
 for (int j=0; j<MAXJ; j++) {
 if (c(i,j))
 break iloop;
 }
}

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

12/19

Loop categories (III)
Successor(s) and exit(s)

● Unique successor:
unique point after
(around possible).

● Multiple successors:
multiple points after
(around impossible).

● Loops with unique exit
node allow further
behaviour prediction
(context exposure).

i=0;
1

if(i<MAXI)
2

j=0;
3

if(j<MAXJ) if(c(i,j))

j++;

i++

/* A */

4

6

5

7

8

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

13/19

Context Exposure (I)

● For method calls (for example), the context
exposed comprises the target, the caller
object and the arguments.

● Need similar data for loops to exploit the
loop join point potential.

● Otherwise, only able to recognise that there
is a loop, but no extra information on what
it does.

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

14/19

Context Exposure (II)

● Exposing data processed and guiding the
execution.

● “Arguments” to the loop.
● Integer range and Iterators.
● Arrays and Collections.
● (Only loop with unique exit nodes to avoid

“break” statements and irregular iterations)

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

15/19

Loop selection

● In AspectJ, the selection is (ultimately) based on a
name pattern, for example on the method name or
an argument type,

● Loops haven't got names,

● Selection to be made on argument types and on
data processed: integer range and Iterators; and
especially arrays and Collections. (+cflow,
within and withincode)

● pointcut bytearrayloop(byte[] a):
 loop() && args(..,a);

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

16/19

LoopsAJ
Implementation using abc

● abc: AspectBench Compiler (full AspectJ
compiler).

● LoopsAJ, our extension for abc, provides
the loop() pointcut.

● Analysis capabilities of Soot.

● Limitation: only one “after” point possible,
but could certainly be overcome.

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

17/19

Reflection and analyses

● Further analyses of the code, the result of
which could be access via reflection

● thisJoinPoint.isArrayBoundSafe()
● thisJoinPoint.isParallelisable()
● (Could probably be optimised with SCoPE if

in the pointcut description and static part)
● Potential for further results if whole-

application analysis.

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

18/19

Related topics:
loop-body join point

● It would be possible to insert a node similar
to the “pre-header”, but for edges coming
from the loop.

● This would comprise the evaluation of the
condition within the definition of the “loop-
body”.

● What context could be exposed?

Br
un

o
H

ar
bu

lo
t

–
AO

SD
 2

00
6

–
Bo

nn
,

22
/0

3/
20

06

19/19

Summary

● Loop join point: a join point based on the
recognition of a complex behaviour.

● Meaningful thanks to context exposure.
● Problem of loop selection would probably

benefit from more advanced pointcut
mechanisms.

● LoopsAJ:
http://www.cs.manchester.ac.uk/cnc/projects/loopsaj/

