
SEPARATING CONCERNS
IN SCIENTIFIC SOFTWARE

USING
ASPECT-ORIENTED
PROGRAMMING

A THESIS SUBMITTED TO THEUNIVERSITY OFMANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2006

By
Bruno Harbulot

School of Computer Science

Contents

List of Figures 8

List of Listings 11

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 16
1.1 Software engineering in scientific computing 16
1.2 Aspect-Oriented Programming . 17

1.2.1 Concerns and software design 17
1.2.2 Crosscutting concerns and aspects 18

1.3 Code-tangling in scientific software 18
1.3.1 Explicit parallelisation . 19
1.3.2 Compiler directives for parallelism 20
1.3.3 Compiler directives for sparse matrices 22
1.3.4 Comparing three versions of the same application 23
1.3.5 Separation of concerns in scientific software 25

1.4 Java-based numerical computing 25
1.5 Challenges and contributions . 27

1.5.1 Aspects for parallel computing 27
1.5.2 AspectJ and beyond: join points for complex behaviours . 27

1.6 Outline . 28

2

2 Aspect-Oriented Programming 29
2.1 Introduction to Aspect-Oriented Programming 29

2.1.1 Motivation . 29
2.1.2 Concepts . 31
2.1.3 Languages and tools . 34

2.2 Performance as an aspect . 35
2.2.1 Aspects for loop fusion . 38
2.2.2 Aspects for sparse matrix code 41

2.3 Summary . 43

3 Join points for parallelism in AspectJ 44
3.1 Aspects for the Java-Grande Forum benchmark suite 44

3.1.1 Minor refactoring . 45
3.1.2 Major refactoring . 53
3.1.3 Moderate refactoring . 54
3.1.4 Aspects for the JGF benchmarks: summary 55

3.2 An object-oriented model for loops 56
3.2.1 Model RectangleLoopA . 57
3.2.2 Model RectangleLoopB . 58
3.2.3 Model RectangleLoopC . 59
3.2.4 Object-oriented loops: summary 60

3.3 Summary . 61

4 A join point for loops in AspectJ 62
4.1 The loop join point model . 63
4.2 From source or from bytecode . 65
4.3 Shadow matching: recognising the loops 67

4.3.1 Dominators, back edges and natural loops 68
4.3.2 Loops in the general case 69
4.3.3 Loops with a unique successor node 72
4.3.4 Loops with a unique exit node 73
4.3.5 Summary . 74

4.4 Context exposure . 74
4.4.1 Iteration space . 75

4.4.1.1 Loop iterating over a range of integers 75
4.4.1.2 Loop iterating over an Iterator 76

3

4.4.2 “Iterable” data . 76
4.5 Loop selection . 76
4.6 Issues related to exceptions . 77
4.7 Implementation in abc: LOOPSAJ 81

4.7.1 Shadow matching . 82
4.7.2 Context exposure and transformations 84

4.7.2.1 Exposing the iteration space context 84
4.7.2.2 Exposing the originating “iterable” data context . 86
4.7.2.3 Writing pointcuts 86

4.7.3 Limitations . 87
4.8 Join point reflection and loop analyses 87
4.9 Aspects for parallelisation . 91
4.10 Related topics . 94

4.10.1 “Loop-body” join point . 94
4.10.2 “If-then-else” join point . 95

4.11 Summary . 96

5 Applications and performance evaluation 98
5.1 Aspects for flexibility in implementing parallelisation strategies . . 100
5.2 Aspects for refactored code, using AspectJ 108
5.3 Aspects for the join point for loops, using LOOPSAJ 108
5.4 Experimental environment . 112

5.4.1 Machines . 112
5.4.2 Java virtual machines . 112
5.4.3 Compilers . 113

5.5 Test-case: data-based vs. cflow-based selection in LOOPSAJ 113
5.6 Test-case: successive over-relaxation 118

5.6.1 AspectJ approach: object-oriented loops 120
5.6.1.1 Cost of refactoring 121
5.6.1.2 Cost of parallelising 126

5.6.2 LOOPSAJ approach . 129
5.6.2.1 Cost of weaving 133
5.6.2.2 Cost of parallelising 134

5.6.3 Performance comparison 136
5.7 Test-case: the Crypt application . 139

5.7.1 AspectJ approach: minor refactoring 139

4

5.7.2 LOOPSAJ approach . 139
5.7.3 Performance comparison 141

5.8 Summary . 143

6 Conclusions 145
6.1 Contributions . 145

6.1.1 Contributions to scientific computing 146
6.1.2 Contributions to aspect-oriented programming 146
6.1.3 Performance evaluation . 147

6.2 Critique . 148
6.3 Related and future work . 149

A AspectJ syntax guide 150
A.1 General structure of aspects . 151
A.2 Inter-type declarations . 151
A.3 Pointcut descriptors . 152
A.4 Advice . 166

B A source-code and structural approach 168
B.1 Join point as point in the structure of the program 168
B.2 Tools . 169

B.2.1 JTransformer . 169
B.2.2 LogicAJ . 170

B.3 Loop fusion . 173
B.4 Aspects for refactoring . 175

C Listings 176
C.1 Object-oriented loops . 176

C.1.1 RectangleLoopA . 176
C.1.2 RectangleLoopB . 179
C.1.3 RectangleLoopC . 180

Bibliography 182

5

List of Figures

1.1 Crosscutting due to MPI statements in the MPJ version of RayTracer. 24

2.1 Example of aspects in a figure editor. 30
2.2 Procedural implementation of a simple filter. 38
2.3 Description of non-optimised complex filters. 39
2.4 Optimised version of a complex filter. 39
2.5 Implementation of a simple filter in the aspect-oriented version. . . 40
2.6 Example of AML code: LU factorisation. 42

3.1 UML class diagram for model RectangleLoopA. 57
3.2 UML class diagram for model RectangleLoopB. 58
3.3 UML class diagram for model RectangleLoopC. 59

4.1 Summary of the patterns to be recognised by the loop join point
model. 65

4.2 Control-flow graph (a) and dominator tree (b) for a simple for-loop. 68
4.3 A combined loop consisting of two natural loops with the same

header. 69
4.4 Insertion of a pre-header. 70
4.5 Two nested loops with a break statement jumping outside the outer-

loop. 71
4.6 Complete block-level control flow graph. 79
4.7 Another possible control-flow graph. 80
4.8 Control-flow graph with special nodes for exceptions. 82

5.1 Performance comparison between data-based and cflow-based
pointcuts on Sun JVM 1.5.0 (client)/Sparc. 116

5.2 Performance comparison between data-based and cflow-based
pointcuts on IBM JVM 1.4.2/Athlon. 116

6

5.3 Performance comparison between data-based and cflow-based
pointcuts on Sun JVM 1.5.0 (server)/Athlon. 117

5.4 Performance comparison between data-based and cflow-based
pointcuts on Sun JVM 1.5.0 (client)/Athlon. 118

5.5 North, South, East and West in the Red-Black algorithm. 119
5.6 Red/Black decomposition. 119
5.7 Performance results for the Red-Black application, using object-

oriented loops, without parallelism, on IBM JVM 1.4.2/Athlon. . . 122
5.8 Performance results for the Red-Black application, using object-

oriented loops, without parallelism, on Sun JVM1.4.2 (client)/Athlon.123
5.9 Performance results for the Red-Black application, using

object-oriented loops, without parallelism, on Sun JVM 1.4.2
(server)/Athlon. 123

5.10 Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM1.5.0 (client)/Athlon.124

5.11 Performance results for the Red-Black application, using
object-oriented loops, without parallelism, on Sun JVM 1.5.0
(server)/Athlon. 124

5.12 Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM1.5.0 (server, 64-bit
mode)/Sparc. 125

5.13 Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on SGI JVM 1.4.1/MIPS. . . . 125

5.14 Performance results for the Red-Black application, using object-
oriented loops, with an aspect for parallelisation, on Sun JVM
1.5.0/Sparc. 128

5.15 Performance results for the Red-Black application, using object-
oriented loops, with an aspect for parallelisation, on Sun JVM
1.5.0/Pentium-III. 128

5.16 Performance results for the Red-Black application, using object-
oriented loops, in parallel, on IBM JVM 1.4.2/Pentium-III. 129

5.17 Performance results for the Red-Black application, using LOOPSAJ,
without parallelism, on IBM JVM 1.4.2/Athlon. 133

5.18 Performance results for the Red-Black application, using LOOPSAJ,
without parallelism, on Sun JVM 1.5.0 (server)/Athlon. 134

7

5.19 Performance results for the Red-Black application, using LOOPSAJ,
with an aspect for parallelisation, on IBM JVM 1.4.2/Pentium-III. . 135

5.20 Performance results for the Red-Black application, using LOOPSAJ,
with an aspect for parallelisation, on SUN JVM 1.5.0 (client
mode)/Sparc. 135

5.21 Comparison of object-oriented loops and loop join point (Red-
Black algorithm), single Athlon, Sun JVM 1.5.0 (server mode). . . 137

5.22 Comparison of object-oriented loops and loop join point (Red-
Black algorithm), dual Pentium-III, using the IBM JVM 1.4.2. . . . 138

5.23 Comparison of object-oriented loops and loop join point (Red-
Black algorithm), 4-processor Sun Sparc, using the Sun JVM 1.5.0
(client). 138

5.24 Comparison of object-oriented loops and loop join point (Red-
Black algorithm), 4-processor Sun Sparc, using the Sun JVM 1.5.0
(64-bit server). 139

5.25 Comparison between the original, the refactored and the loop join
point version of Crypt, in parallel on a 4-processor Sun Sparc, using
the Sun JVM 1.5.0 (client). 142

5.26 Comparison between the original, the refactored and the loop join
point version of Crypt, in parallel on a 4-processor Sun Sparc, using
the Sun JVM 1.5.0 (64-bit server). 142

8

List of Listings

1.1 Code-tangling when parallelising two actions in Java. 20
1.2 Example of loop parallelisation in OpenMP. 21
1.3 Example of dense code for the sparse compiler. 22
2.1 Example of aspect, using AspectJ (before and after advice). 36
2.2 Example of aspect, using AspectJ (around advice). 37
3.1 Implementation of cipher_idea in the sequential version. 46
3.2 Implementation of cipher_idea in the multi-threaded version. . . 47
3.3 Re-factoring of cipher_idea for aspects. 48
3.4 Example aspect for parallelising Crypt using multiple Java Threads. 49
3.5 Example aspect for parallelising Crypt using MPI. 50
3.6 Rectangular double loop nest in Java. 56
3.7 Implementation of a double for-loop nest using RectangleLoopA. 58
3.8 Implementation of a double for-loop nest using RectangleLoopB. 59
3.9 Implementation of a double for-loop nest using RectangleLoopC. 60
4.1 Example of Java for-loops iterating over a Collection. 63
4.2 Example of Java for-loops iterating over an array. 64
4.3 Simple examples of equivalent loops. 66
4.4 Loop with more complex conditions. 66
4.5 Illustration of a possible special handling of break statements. . . . 73
4.6 Example of nested loops involving exceptions. 78
4.7 Code-motion example. 85
4.8 Example use of thisJoinPoint. 89
4.9 Example use of thisJoinPoint with LOOPSAJ. 90
4.10 Loop parallelisation using Java Threads. 92
4.11 Loop parallelisation using mpiJava. 93
4.12 Loop-body join point: where are “before” and “after”? 95
5.1 Aspect for parallelisation using block scheduling. 102

9

5.2 Aspect for parallelisation in a thread-pool using block scheduling. . 103
5.3 Aspect for parallelisation in a thread-pool using cyclic scheduling. . 104
5.4 Aspect for parallelisation using the Fork-Join framework. 105
5.5 Multiplication of two dense matrices. 106
5.6 Multiplication of two triangular matrices. 106
5.7 Aspect for multiplying matrices in parallel using block scheduling. 107
5.8 Aspect for multiplying matrices in parallel using the Fork-Join

framework. 107
5.9 Writing pointcuts for parallelisation using the join point for loops. 108
5.10 Aspect that simply proceeds with the original join point execution. 110
5.11 Aspect that splits the loop recognised by the pointcut into blocks

and executes it in several threads. 111
5.12 Simple example with three nested loops. 114
5.13 Array-based aspect for the simple example. 114
5.14 cflow-based aspect for the simple example. 115
5.15 Red/Black test-case: methodBasicA. 120
5.16 Red/Black test-case: methodBasicB. 121
5.17 Writing pointcuts for parallelising the object-oriented loop models. 127
5.18 Red/Black test-case: methodBasicA. 130
5.19 Pointcuts for parallelising loops in the Red-Black algorithm (basic

methods A and B). 131
5.20 Red/Black test-case: methodBasicC. 132
5.21 Pointcuts for parallelising loops in the Red-Black algorithm

(methodBasicC). 132
5.22 Implementation of cipher_idea and Do. 140
A.1 Inter-type declaration example. 152
B.1 Sample Java method. 170
B.2 JTransformer/Prolog facts for the method in Listing B.1. 171
B.3 JTransformer/Prolog facts for the method in Listing B.1 (sorted

according to the syntax tree). 172
B.4 Mock objects using LogicAJ. 173
B.5 Merging two loops using JTransformer. 174
C.1 Class RectangleLoopA and interface Runnable2DLoopBody. . . . 176
C.2 Aspect for implementing multi-threading in RectangleLoopA. . . . 177
C.3 Class RectangleLoopB. 179

10

C.4 Class RectangleLoopC. 180

11

Abstract

The work reported in this thesis attempts to build a better link between scientific
programming and software engineering. Scientific software is concerned with both
the mathematical model and the high performance of the computation, particularly
via the use of parallel computers. After showing the tangling of code that results
from the interaction of these two major concerns, this thesis demonstrates how
to improve the engineering of scientific applications by applying a novel technique
for separating concerns: Aspect-Oriented Programming (AOP). AOP aims to
encapsulate concerns that “crosscut” the main program flow into separate entities,
known as aspects.

The most mature aspect-oriented tool that has been available during the course
of this project is AspectJ, which is an extension of Java. The Java Grande Forum
benchmark suite, originally used for assessing the suitability of Java for High-
Performance Computing, is utilised, together with AspectJ, in an attempt to sepa-
rate the parallelisation concern from the numerical model. AspectJ can be used to
write aspects for parallelising applications, but often at the cost of refactoring, the
amount of which ranges from minor (extracting a method) to major (redesigning
the whole application). The problems lie in the fact that the points where paral-
lelisation should occur are not naturally join points in AspectJ (i.e. points where
AspectJ can intervene).

Consequently, amodel for a join point capable of handling loops—which are the
main target of parallelisation— is proposed. This model goes beyond the present
AspectJ models and demonstrates the need to recognise complex behaviours for an
effective separation of concerns.

Finally, aspects for implementing parallelisation according to different schemes
are presented, together with performance results. This demonstrates the flexibility
of aspects for implementing parallelisation, which is always a crosscutting concern
with respect to the main concern of high-performance numerical applications.

12

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other
institution of learning.

13

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may bemade only in accordance with instructions given
by the Author and lodged in the John Rylands University Library of Manchester.
Details may be obtained from the Librarian. This page must form part of any
such copies made. Further copies (by any process) of copies made in accordance
with such instructions may not be made without the permission (in writing) of the
Author.

The ownership of any intellectual property rights which may be described in
this thesis is vested in the University of Manchester, subject to any prior agreement
to the contrary, and may not be made available for use by third parties without the
written permission of the University, which will prescribe the terms and conditions
of any such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the head of School of Computer Science.

14

Acknowledgements

I would like to express my thanks to my supervisor, Professor John R. Gurd, for
his invaluable advice and guidance. I would also like to thank the members of the
Centre for Novel Computing, at the University of Manchester, and in particular
those with whom I shared a friendly office for three years.

I would like to acknowledge funding from the Department of Computer
Science, the CNC and the Engineering and Physical Sciences Research Council
(EPSRC) —via the RealityGrid project.

I would like to thank other members of the Aspect community, in particular the
abc team —at Oxford University and at McGill University in Montreal— and the
Roots group at the University of Bonn, both for providing me with tools, support
and fruitful discussions.

I express my gratitude to my parents who have supported me throughout more
years of studies and without whom none of this would have happened, obviously.

15

Chapter 1

Introduction

1.1 Software engineering in scientific computing

This thesis reports an attempt to build a better link between two disciplines: scien-
tific computing and software engineering. Nowadays, computers are widely used
by scientists for both simulations and analysis of results of experiments. Weather
forecasting or simulations of fluid flows are examples of scientific applications of
computers. Scientists write software that suits the needs of this kind of applica-
tion. Such applications usually require a large number of numerical calculations
to be performed. For this reason, the emphasis has traditionally been placed on
high performance, i.e. on computational speed. The techniques utilised for provid-
ing high performance rely on software engineering technologies and programming
languages —such as Fortran— that have been neglected for a long time in other
disciplines of the software industry. However, as these pieces of software become
increasingly complex, their programmers have to cope more and more with soft-
ware development issues, such as correctness, robustness, extensibility, re-usability
and compatibility [Mey88, ch. 1].

In the meantime, software engineering, as a research area, has evolved and has
had considerable influence on most other software areas. For example, object-
oriented programming (OOP) [Mey88] is one of the main technologies used by
software developers today. However, OOP has neither solved all the problems in
software engineering, nor has it penetrated the scientific community, as yet.

16

CHAPTER 1. INTRODUCTION 17

1.2 Aspect-Oriented Programming

Software engineering aims to provide clear processes andmechanisms for designing
and maintaining software. These processes are driven by the interactions between
diverse concerns. The software engineering mechanisms are meant to provide pro-
grammers with a means to abstract and encapsulate these concerns and these inter-
actions. The latest software engineering paradigm, Aspect-Oriented Programming,
aims to deal with so-called “crosscutting” concerns, as described in the remainder
of this section.

1.2.1 Concerns and software design

As defined in [IEE00, p. 4], “ concerns are those interests which pertain to the system’s
development, its operation or any other aspects that are critical or otherwise important
to one or more stakeholders”. Concerns can be more generally defined as “any matter
of interest in a software system” [SR02].

Designing a piece of software consists of abstracting the concerns involved
into the appropriate constructs. Using procedural languages, such as C, Pascal or
Fortran, designers encapsulate concerns into functions, procedures or subroutines;
then these can be grouped into modules, with various degrees of inter-dependency.
In object-oriented programming, the use of classes and inheritance provides a
further degree of abstraction.

Functional, procedural or object-oriented programming languages have a com-
mon way of providing mechanisms for abstraction: concerns placed into functions,
procedures or objects can be seen as functional units of the system [KLM+97].
Methods, classes and libraries are object-oriented constructs for encapsulating
concerns at several degrees of granularity. An object-oriented design aims to make
concerns match these constructs. As far as possible, this consists of mapping the
concerns involved into a set of objects, with associated actions, linked by inheri-
tance (“is-a”) or by client (“has-a”) relationships. As a result, the links between
the objects represent relationships between the purposes of the different concerns.
However, this kind of decomposition into functional units is not suitable for all
kinds of concerns.

CHAPTER 1. INTRODUCTION 18

1.2.2 Crosscutting concerns and aspects

However well decomposed an object-oriented design may be, some concerns often
interact with each other in such a way that they cannot be encapsulated properly
within object-oriented constructs. These interactions lead to code tangling —
when the elements of code for two concerns are in the same unit and cannot be
dissociated— or to code scattering1 —when a concern involves code spread across
several units. Two concerns that are related in such a way that they imply code
scattering or code tangling are said to crosscut each other. A concern that crosscuts
the main purpose of a unit is a crosscutting concern (with respect to that unit’s
decomposition).

For example, in a system that provides its users with an e-mail service and a file
repository service, the two sets of objects that provide these services will have an
authentication concern in common. At least two units (sets of objects) will contain
statements for this authentication concern. This is an example of code-scattering.
If monitoring certain activities in a certain context is required, statements will be
added in between the functional code (that performs what is to be monitored).
This is an example of code-tangling. More generally, tracing and logging are typical
examples of concerns that almost always crosscut the main component’s purpose:
the concern of tracing the behaviour of a component is different to themain concern
that is implemented by this particular component. More examples of code-tangling
in the context of scientific applications are presented in Section 1.3.

Aspect-Oriented Programming (AOP) is a recent programming paradigm that is
aimed at providing a better separation of concerns in software. In AOP, functional,
procedural and object-oriented paradigms are augmented with a means of encapsu-
lating crosscutting concerns separately. In an aspect-oriented design, crosscutting
concerns are encapsulated into aspects. A further description of aspect-oriented
programming and its mechanisms is presented in Chapter 2.

1.3 Code-tangling in scientific software

Scientific applications are often focused on two concerns: the algorithm used by
the calculation itself (related to the scientific model) and the high performance of
its implementation. These are two separate concerns. Yet, in current procedural

1In most cases, code scattering implies some code tangling, since some elements of code are
located in units that have their own purposes.

CHAPTER 1. INTRODUCTION 19

or object-oriented implementations, these elements of code are usually interlaced
within the same unit of the system design. This is an example of code tangling, and
it occurs as a direct consequence of scientific model concerns and high performance
concerns crosscutting each other.

One example where crosscutting arises is in code written to be executed in
parallel for achieving high performance. Section 1.3.1 gives an overview of the
crosscutting that is involved when the parallelisation has to be managed explicitly.
Section 1.3.2 shows how compiler directives let the programmer avoid the explicit
coding of parallelisation. Section 1.3.3 presents a similar use of compiler directives
for sparse matrix optimisation. Both uses of compiler directives still leave some
elements of code that crosscut the algorithmic description of the computation.
Section 1.3.4 shows, through the analysis of three implementations of the same
algorithms, how the concern of parallelisation crosscuts the calculation concern
that is the main purpose of the programs. This section aims to show the drawbacks
of the design of these examples in terms of modularity.

1.3.1 Explicit parallelisation

Explicit parallelisation could be implemented using languages such as C (for exam-
ple by explicitly managing the interaction between Unix-style processes). How-
ever, this kind of programming is not often used directly for scientific applications,
which more commonly implement parallelism using compiler directives.

Java is the language used for most examples in this thesis.2 The default way of
implementing parallelism in Java is a form of explicit parallelisation. Java provides
multi-threading natively through its Thread class. Concurrent instances of Thread
can be executed over several processors, using currently available Java Virtual Ma-
chines (JVM). The language and API mechanisms used for implementing several
concurrent threads rely on either extending the Thread class or implementing the
Runnable interface [CWH00, OW99, ch. 2].

Parallelising a sequential program requires both a specific design using the
Thread-related classes and the explicit instantiation and synchronisation of those
threads. This usually implies refactoring the objects describing the computa-
tion [OW99, ch. 9]. As a result, elements of the computation are placed within
constructs defining the threads, and statements for managing the threads are placed
within the units originally dedicated to the descriptionof the computation, as shown

2 Further details about Java for scientific computing are presented in Section 1.4.

CHAPTER 1. INTRODUCTION 20

in Listing 1.1. Since the instructions for the original algorithm concern and the
multi-threading concern cannot be clearly separated one from the other, this is an
example of code-tangling and code-scattering.

Listing 1.1: Code-tangling when parallelising two actions in Java.
public class Example {

...
/** This method executes sequentially action1() and action2() */

public void sequentialExample() {
action1 () ;
action2 () ;

}
...

/**

This method executes action1() and action2() in parallel.

The call to action1() has been relocated in a dedicated class

implementing the Runnable interface.

The concern of representing the actions to perform and the

concern of running them in parallel are tangled with each other.

*/

public void parallelExample() throws InterruptedException {
Thread otherThread = new Thread (new Action1Runnable()) ;
otherThread.start() ;
action2() ;
otherThread.join() ;

}

/** This class is a Runnable meant to execute action1() */

class Action1Runnable implements Runnable {
public void run() {

action1 () ;
}

}
}

1.3.2 Compiler directives for parallelism

In general, explicit parallelisation is difficult. In scientific applications, parallelism
is more often implemented using compiler directives or using APIs3 (for example
OpenMP [CDK+01] orMPI [SOW+95]). These techniques allow the programmer

3API stands for Application Programming Interface. It is a set of libraries with a well-defined
interface that programmers can re-use.

CHAPTER 1. INTRODUCTION 21

to parallelise loops with little modification to the original structure, and to hide
extra complexity such as that due to the explicit creation of processes and threads.

OpenMP provides a set of compiler directives and library functions that can
be used in C, C++ and Fortran for parallelising programs for shared-memory
multi-processor machines. There is also an equivalent of OpenMP for Java:
JOMP [BK00]. Listing 1.2 shows a basic example of for-loop parallelisation with
OpenMP in C. The OpenMP directive (#pragma omp parallel for) is used
for compiling the for-loop in such a way that it can be executed in parallel on a
multi-processor machine.

Listing 1.2: Example of loop parallelisation in OpenMP.
#include <stdio.h>
#include <stdlib.h>

int main () {
int i, n=20 ;
int *squares = (int*) malloc (n*sizeof(int)) ;

#pragma omp parallel for
for (i=0; i<n; i++) {

fprintf (stderr, "Executing on thread %i.\n",omp_get_thread_num()) ;
squares[i] = i*i ;

}

free(squares) ;
return 0;

}

Although implemented with mechanisms different to OpenMP, MPI4 is a Mes-
sage Passing Interface standard that is also aimed at parallelising applications. MPI
defines a standardAPI that has to be implemented by anMPI library. The functions
of the MPI library are used to hide the complexity of passing data and messages
between several threads of a program. Both MPI and OpenMP rely on inserting
statements in the functional code. In the case of MPI, these statements are func-
tion calls, whereas in the case of OpenMP, these statements may also be compiler
directives. They both rely on a library for abstracting some of the complexity of
program parallelisation. There are prototype implementations of MPI for Java:
mpiJava [BCF+98] and MPJ [CGJ+00].

4See http://www.mpi-forum.org/.

http://www.mpi-forum.org/

CHAPTER 1. INTRODUCTION 22

Other compiler directive approaches for implementing parallelism have been
provided in Java, such as javar [BVG97], which uses a pre-processor for restruc-
turing programs into multi-threaded programs by using annotations similar to
OpenMP compiler directives.

1.3.3 Compiler directives for sparse matrices

Bik et al. have produced a way for improving modularity in scientific software that
uses sparse matrices [BBKW98]. This consists of an extended Fortran compiler
(the “sparse compiler”) which selects routines optimised for sparsematrices in code
written as if the matrices were dense. A program that represents matrices as two-
dimensional arrays is converted automatically into a version that uses the sparse
routines. The information regarding the sparse characteristics of the matrices is
provided to the compiler by annotations (compiler directives). The example in
Listing 1.3 shows compiler directives that describe array A as a banded matrix, that
is to say, all the aij values where 1 − N ≤ i − j ≤ −6 or 6 ≤ i − j ≤ N − 1

are zero (the −6 and 6 values are relative to the width of the band chosen in this
example). Programmers can then write operations on array A as if it was a dense
matrix. The compiler will automatically optimise these operations according to the
sparsity described in these directives.

Listing 1.3: Example of dense code for the sparse compiler.

REAL A(N,N)
C_SPARSE(ARRAY(A) , ZERO (1-N<=I-J<= -6)(1,1))
C_SPARSE(ARRAY(A) , DENSE (-5<=I-J<= 5)(1,1))
C_SPARSE(ARRAY(A) , ZERO (6<=I-J<=N-1)(1,1))

... operations on A

This technique has many advantages in terms of modularity. It is easier for
programmers to try different storage schemes or ways of characterising sparsity
(for example a triangular matrix is a particular case of a banded matrix, and both
schemes can be tested). The readability of the operations performed on thematrices
is also improved: the particular treatment of sparse matrices does not interfere with
the actual purpose of the algorithm. Moreover, the resulting code is less error-prone
since it is less confusing, better separated, and thus easier to debug.

Having to deal explicitly with sparse routines, without this sparse compiler,
would be made difficult by the large amount of tangled code. However, although

CHAPTER 1. INTRODUCTION 23

the sparse compiler is a first and welcome step towards the elimination of code-
tangling, the annotations for dealing with sparse matrices are still interlaced in the
algorithm representing the main concern. The sparse properties are not an explicit
part of the data structure, and where they apply has to be specified explicitly.

1.3.4 Comparing three versions of the same application

In order to evaluate the performance of Java in scientific applications, the EPCC
group [EPC] have developed the Java Grande benchmark suite [BSW+00, SB01,
SBO01, BSPF01]. Three categories of benchmarks are available on their web-
site: the sequential category, the multi-threaded category—which uses Java
threads [OW99]— and the MPJ category—which implements parallelism using
mpiJava, a Java implementation of MPI [BCF+98, CGJ+00].

Each category is divided into three sections: section 1 (“Low level operations”)
is for measuring the performance of low level operations; section 2 (“Kernels”)
tests short codes that implement specific operations that are frequently used; and
section 3 (“Large scale applications”) tests code for larger real applications. Whereas
programs in section 1 are specific to each category of the benchmark suite, most
of the examples in section 2 (Crypt, LUFact, Series, SOR and SparseMatmult)
and in section 3 (MolDyn, MonteCarlo and RayTracer) are common to the three
categories, each example implementing parallelism with the method appropriate to
the suite to which it belongs.

In the sequential category, the parallelism concern is not implemented. The
two other categories have extra statements and a slightly different structure for
implementing parallelism. Figure 1.1 highlights the statements that implement
parallelism in the MPJ version of the RayTracer application. These statements
are scattered throughout several units and interlaced with the statements of the
functional units (the reference design and implementation for the functional units
is the sequential version). The multi-threaded suite is implemented using a design
similar to the one shown in Listing 1.1.

This code-tangling makes it difficult to isolate the concerns involved. In this
example, the computation concern and the high-performance (by parallel execu-
tion) concern cannot be studied separately. Moreover, any evolution of the com-
putational model would require modifications to all three categories (sequential,
multi-threaded and MPI). In theory, modifying three versions of the same appli-
cation should not be a problem. However, this process is error-prone and better

CHAPTER 1. INTRODUCTION 24

The length of these rectangles is proportional to the number of lines in the files. The
highlighted lines are those that containMPI statements. These statements are spread across
four files and located at non-contiguous places. The statements that are not highlighted
have not been modified from the sequential version. This example is typical of many of the
Java Grande benchmark suite codes.

Figure 1.1: Crosscutting due to MPI statements in the MPJ version of RayTracer.

CHAPTER 1. INTRODUCTION 25

separation of concerns would have promoted consistency in the evolution of the
application.

1.3.5 Separation of concerns in scientific software

There are other examples where scientific code suffers from code-tangling and
code-scattering. For instance, many linear algebra systems of equations arise out
of scientific problems and are required to be solved. In most cases, these sys-
tems involve large matrices that contain many zero-valued coefficients (i.e. sparse
matrices). Specific algorithms have been developed to deal with sparse matrices.
For linear-algebra applications, two or three concerns can be identified: the means
of resolution of the system (by Gaussian pivot, for example), the sparsity of the
matrix, and possibly the parallelisation of the algorithm. The resulting piece of soft-
ware, if written using a procedural or an object-oriented language such as Fortran
or C++, will have interlaced statements for these three concerns. Even though
this software can be efficient, such a design does not favour adaptation to another
kind of sparsity (for example, from upper triangular to banded) or to another kind
of parallelisation (for example, suitable for another architecture).

According to Dijkstra, “the main characteristic of intelligent thinking is that one
is willing and able to study in depth an aspect of one’s subject matter in isolation, for
the sake of its own consistency, all the time knowing that one is occupying oneself with
only one of the aspects”5 [Dij76, ch. 27]. This principle, which consists of being
able to focus on one facet of a problem at a time, is referred to as the principle
of “separation of concerns” [Dij76, ch. 27]. The general aim of this thesis is to
provide computer-literate scientists with a means of enforcing a better separation
of the concerns related to the mathematical models from the concerns related
to performance, by providing adequate abstraction mechanisms for implementing
concerns. The context in which this is attempted is that of the object-oriented Java
programming language.

1.4 Java-based numerical computing

“Java” consists of two parts: the Java language [GJSB05] and the Java virtual
machine (JVM) [LY99]. In general, programs written in the Java language are
executed on the JVM, and the JVM is mainly used for running programs written

5The term aspect is not used here as part of the Aspect-Oriented Programming terminology.

CHAPTER 1. INTRODUCTION 26

in Java. Their respective designs have influenced each other; however, they do
not necessarily need each other. On the one hand, Java code can be compiled
into native code for a particular architecture, for example with GCJ—the GNU
Compiler for Java [gcj]. On the other hand, Java byte-code can be generated from
other languages and can be run on the JVM [Tol, GC00]. In particular, one of these
languages is AspectJ (an aspect-oriented extension to Java6).

Java technology, including both language and virtual machine, has become in-
creasingly popular over the last ten years. The JVMand its standardAPI7 havemade
Java applications highly portable. Moreover, the programming language is relatively
easy to use, especially since it relies implicitly on the virtual machine for memory
management and security. These advantages have made Java the technology of
choice for a large number of applications, in a wide range of domains.

Several standard features, such as portability, the networking API and built-
in multi-threading, have made Java particularly attractive for scientific pro-
gramming. The question of its suitability as both a programming language
and a running environment for numerical computation has been raised several
times [CCFL98, Art00, MMG+00, BMPP01, Thi02]. This has become more per-
tinent since the appearance of virtual machines with just-in-time (JIT) compilers,
such as HotSpot [Hot], which have increased the performance to an “acceptable”
level.

The Java Grande Forum (JGF) [FSS99, GM00, CRP01, MFG02] “[aims to]
develop community consensus and recommendations for either changes to Java or
establishment of standards (frameworks) for Grande libraries and services” [JGF]. A
Grande application “is any application, scientific or industrial, that requires a large
number of computing resources” [Pan98]. The JGF has identified five critical issues
related to the use of Java for large computational problems:

• Multidimensional arrays are currently represented as arrays of arrays;

• Complex arithmetic is not supported with a primitive type;

• Lack of lightweight classes;

• Using floating-point hardware is at odds with Java’s portability;

6See Section 2.1.3 and Appendix A
7 The Java development kit (JDK) and runtime environment (JRE) provide the standard Java

API.

CHAPTER 1. INTRODUCTION 27

• Operator overloading is not possible.

These issues have been discussed [MMG+00, BMPP01], and some solutions have
been proposed. Since Java 1.2, floating point operations can take some advantage
of the underlying hardware.

Evolution towards a Java environment for high-performance computing, in both
the language and specifications, and the JVM implementations, is encouraging. On
the one hand, the JavaCommunity Process8 has been set up to address the evolution
of the specifications of Java (for both the language and the virtual machine), via
Java Specification Reviews (JSRs); but each review often takes several months. On
the other hand, there has been a clear improvement in performance each time a new
JVM has been released, especially on PCs [BMPP01].

However imperfect Java is for high-performance computing, this is the platform
of choice for most of the supported aspect-oriented tools.9 Therefore, for practical
reasons, the experiments, the tools and the methods developed throughout this
thesis are Java-based. The performance results presented in the thesis depend
heavily on the JVM environment within which the test-cases have been executed.

1.5 Challenges and contributions

1.5.1 Aspects for parallel computing

Decoupling numerical models from the expression of their parallelisation is the
main challenge addressed throughout this thesis. The first main contribution of
the thesis is to provide methods that make aspects capable of achieving this goal,
as presented in Chapters 3 and 4. More practically, aspects that implement diverse
parallelisation strategies are shown in Chapter 5. The flexibility induced by these
aspects makes parallelisation a pluggable unit, re-usable across applications.

1.5.2 AspectJ and beyond: join points for complex behaviours

The main problem encountered for applying aspect-orientation to scientific soft-
ware is to identify the adequate abstractions for the domain. In AOP, Filman et
al. define the abstractness constraint as follows. “The constructs of an aspect-oriented

8http://www.jcp.org/
9During the investigation that has led to the thesis, AspectC++ (http://www.aspectc.org/,

[SGP02]) has gained momentum and support, and version 1.0 is about to be released.

http://www.jcp.org/
http://www.aspectc.org/

CHAPTER 1. INTRODUCTION 28

programming language must be abstract enough to match the natural abstractions of the
problem domain. However, they also must be concrete enough to match the realization
of the implementation platform. This constraint aims to minimize the implementation
effort and enable efficiency” [FECA04, Part 1].

The abstractions that AspectJ can match and at which it can intervene are its
join points. In the domain of scientific computing, one natural abstraction is the
loop. However, the current AspectJ join points are limited to relatively simple Java
behaviour and, in particular, do not include loops. The second main contribution
of this thesis is to provide AspectJ with a join point that correspond to a complex
behaviour in the AspectJ model: the join point for loops. Chapter 4 provides
AspectJ with a new join point that enables aspects to intervene directly at loop-
level.

1.6 Outline

Chapter 2 gives an introduction to aspect-oriented programming, which is the
approach used to address the problem, and presents the background work, prior to
this thesis, about aspects and performance.

After this, Chapter 3 presents techniques for using AspectJ for writing aspects
capable of parallelising Java applications; this is done by means of refactorings.
Chapter 4 goes a step further and provides AspectJ with a join point for loops,
so as to avoid any refactorings. Application examples and an evaluation of the
performance of the two approaches are presented in Chapter 5. Finally, Chapter 6
concludes.

Chapter 2

Aspect-Oriented Programming

This chapter introduces Aspect-Oriented Programming (in Section 2.1) and
presents background work, prior to this thesis, about aspects and performance
(in Section 2.2).

2.1 Introduction to Aspect-Oriented Programming

This section is an introduction to Aspect-Oriented Programming (AOP). First,
Section 2.1.1 presents the motivation for this relatively new technology. Sec-
tion 2.1.2 presents the main concepts behind AOP and their novelty. Finally,
Section 2.1.3 gives an overview of current AOP tools and implementations.

2.1.1 Motivation

Object-Oriented Programming (OOP) [Mey88] is probably the most commonly
used programming paradigm today. The evolution from assembler language to
current software engineering paradigms reflects the will for better readability and
re-usability—or, more generally, better organisation— in designing applications.

As discussed earlier, functional, procedural and object-oriented programming
languages have a common way of abstracting and separating out concerns: they
rely on explicitly calling subprograms (subroutines, procedure, methods, etc.) that
represent functional units of the system [KLM+97]. However, not all concerns
can be encapsulated properly in a functional decomposition. For example, tracing
and logging are concerns that are usually distinct from the functional units they are
related to (i.e. the units whose behaviour is traced or logged). As a result, theymust
be coordinated with other functional units and they usually involve code scattered

29

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 30

throughout several of these functional units. Aspect-Oriented Programming aims
at better separation of concerns by providing the aspect as a means to encapsulate
such crosscutting concerns.1

34 October 2001/Vol. 44, No. 10 COMMUNICATIONS OF THE ACM

goal of AOP is to make designs and code more mod-
ular, meaning the concerns are localized rather than
scattered and have well-defined interfaces with the rest
of the system. This provides us with the usual benefits
of modularity, including making it possible to reason
about different concerns in relative isolation, making
them (un)pluggable, amenable to separate develop-
ment, and so forth.

Please say more about the nature of crosscutting
concerns and aspects.

Karl Lieberherr: Two concerns crosscut if the
methods related to those concerns intersect. AOP
deals with crosscutting concerns and descriptions,
designs, and implementations for those concerns. The
artifacts used to describe, design, and implement a

given concern are called methods. We say a method is
related to a concern if the method contributes to the
description, design, or implementation of the concern.

GK: One good way to understand crosscutting
concerns and aspects is with an illustration. Con-
sider the UML for a simple figure editor, as depicted
in the figure here, in which there are two concrete
classes of figure element, points, and lines. These
classes manifest good modularity, in that the source
code in each class is closely related (cohesion) and
each class has a clear and well-defined interface. But
consider the concern that the screen manager should
be notified whenever a figure element moves. This
requires every method that moves a figure element
to do the notification.

The red box in the figure is drawn around every
method that must implement this concern, just as the
Point and Line boxes are drawn around every method
that implements those concerns. Notice that the box
for DisplayUpdating fits neither inside of nor around
the other boxes in the figure—instead it cuts across the
other boxes. This is what we call a crosscutting con-
cern. Using just OO programming, the implementa-

tion of crosscutting concerns tends to be scattered out
across the system, just as it would be here. Using the
mechanisms of AOP, we can modularize the imple-
mentation of the DisplayUpdating behavior into a sin-
gle aspect. Because we can implement this behavior in
a single modular unit, it makes it easier for us to think
about it as a single design unit. In this way, having the
programming language mechanisms of aspects lets us
think in terms of aspects at the design level as well.

Mehmet Aksit: It is important to understand that
crosscutting is relative to a particular decomposition.
Crosscutting concerns of a design cannot be neatly
separated from each other. A basic design rule is to rep-
resent significant concerns as first-class abstractions in
the language. This allows them to be composed and
extended. In the figure editor example, there are two
important design concerns: representing the graphical
elements and tracking the movement of graphical ele-
ments. In the figure, classes are used to model the first
concern. This allows them to be extended using aggre-
gation and inheritance. Also, every graphical class
encapsulates its internal data structure. The second
concern requires tracking movements to also be repre-
sented as a separate class. However, the first choice
makes this difficult because the movement functional-
ity is part of the behavior of graphical classes. We
could have designed the system around the tracking
functionality; in that case, the graphical functionality
would crosscut the tracking classes

Harold Ossher: One of the hard things about cross-
cutting concerns is understanding just what cuts across
what. To clarify this, I think the dominant decomposi-
tion notion is helpful. Software written in standard lan-
guages is written as linear text. This means that, just as
a book is divided in only one way into chapters and
paragraphs, so software is decomposed in only one way
into modules (such as classes). This the dominant
decomposition. The modules making up the dominant
decomposition encapsulate certain concerns effectively
(representation and implementation details of objects
of some kind are encapsulated by classes). As noted by
others previously, other concerns cannot be encapsu-
lated within the dominant modules, and end up being
scattered across many modules and tangled with one
another. These are crosscutting concerns.

How do AOP languages make it possible to
modularize crosscutting concerns?

KL: AOP languages use five main elements to modu-
larize crosscutting concerns: a join point model describ-
ing the “hooks” where enhancements may be added; a
means of identifying join points; a means of specifying
behavior at join points; encapsulated units combining
join point specifications and behavior enhancements;
and a method of attachment of units to a program.

Aspects crosscut classes in a
simple figure editor.

Display
aspect modularity cuts across

class modularity

Figure

Point

FigureElement

getX()
getY()
setX(int)
setY(int)

Line2

*

DisplayUpdating

getP1
setP1
setP1(Point)
setP2(Point)

(Figure source: [EAK+01])

Figure 2.1: Example of aspects in a figure editor.

A short example of crosscutting concerns and use of AOP is shown in Fig-
ure 2.1.2 The figure shows the classes used in a simple figure editor: “a Figure
consists of a number of FigureElements, which can be either Points or Lines. [...]
There is a single Display onwhich figure elements are drawn” [KHH+01a]. Methods
setX and setY of the FigureElements involve two separate actions: they must
update the coordinates in their target object and they must trigger the redrawing
of the display. Updating coordinates X or Y of the target is intrinsic to the ob-
ject and clearly corresponds to, respectively, methods setX and setY. However,
the concern of updating the display has to be handled after executions of either
setX or setY. Thus, the display-update concern crosscuts two methods within
the same class. This concern must also be applied in several classes. Updating
the display is a concern that is not directly related to the FigureElement model.
One can imagine another system, using the same FigureElement model, which
would render elements of this model on a printer instead of a screen. It is pos-
sible for all the statements related to the display to be embedded in the code for

1As explained in Section 1.2.2, the notion of crosscutting is relative to the decomposition of the
other concerns. In particular, a crosscutting concern is one that crosscuts with respect to at least
one other concern.

2This example is taken from [KHH+01a] and [EAK+01].

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 31

the FigureElement model. However, in that case, transforming the application
so that it uses a printer would require modifications in diverse parts of the code,
because the concern of updating the display would crosscut the model and would
not be encapsulated in its own entity. An aspect-oriented implementation of this
application would encapsulate these kind of concerns into aspects, making it easier
to read, re-use and adapt the code in other contexts. The principles of such an
implementation are described in the next section.

2.1.2 Concepts

Aspect-Oriented Programming aims to be able to link together concerns that cut
across each other, and yet encapsulate them transparently as separate program
entities. The general style of programming that arises out of this aim consists of
program statements of the form:

“In programs P , whenever condition C arises, perform action A.” [FF00]

This leads to the following definitions: a join point is a point in the structure or
in the execution of a programwhere a concern crosscutting that part of the program
might intervene. Join points are the points that can be used to express potential
conditions C in programs, according to the above formulation. Join points can be
seen as hooks in a programwhere other program parts can be conditionally attached
and executed.

A pointcut is a subset of all possible join points. The expression of a pointcut
is the pointcut descriptor (often, the term “pointcut” is used in place of “pointcut
descriptor”). A pointcut descriptor defines the condition C in the above formu-
lation. This condition matches a subset of join points which is the pointcut. The
piece of code A that is to be executed when condition C arises (i.e. at a join point
of the pointcut) is called the advice.

The unit of code that defines the pointcuts and the advice related to the same
concern is called the aspect. An aspect can also be more generally defined as a unit
that encapsulates a crosscutting concern3.

3Although it would be possible to encapsulate in the same unit sets of pointcuts and their
associated advice that are not related to the same concern, this would be against the main principle
of AOP, which aims to make it possible to separate concerns by encapsulating crosscutting concerns
each in their own entity.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 32

The counterparts of aspects are componentsor base code, which are the functional
units of code that do not contain aspect-oriented statements but only base actions.
Components are units of code as written using functional, procedural or object-
oriented languages. To some extent, the advice in aspects could be considered as
a component, within which aspects could intervene. However, the problems that
can arise out of interaction between aspects lie beyond this introduction; they are
the subject of continuing research.

In the example shown in Figure 2.1 (described at the end of Section 2.1.1) the
FigureElementmodel is an example of a component. The update of the display is
implemented in an aspect. A pointcut descriptor in this aspect expresses the points
in the execution flow after returning from methods setX or setY, and the piece of
advice associated with this pointcut then updates the display.

Mixing components and aspects together, so that the behaviour specified by
the aspects occurs where and when it is supposed to, is the process of weaving.
Some implementations use a specific type of compiler, called a weaver, to generate
an executable from components and aspects. Other implementations perform
the weaving at runtime or load-time, using mechanisms equivalent to a runtime
form of compilation. The details of these implementations are out of the scope
of this introduction. However, some examples of aspect-oriented languages and
frameworks are given in the next section.

AOP is not about writing macros or inserting code at some given line number.
Rather, it is about applying certain actions when a specifiable behaviour happens.
Thus, mechanisms for aspect orientation rest on three pillars4:

• a model of the behaviours that can be recognised and exploited (the join
points),

• a means of characterising a subset of these possible behaviours (the ability to
define pointcuts),

• a means of implementing the behaviour defined in the aspects at the place
and at the time that the expected behaviour defined in the pointcuts happens
(the weaving of the advice).

The components need not be aware of the effect of the aspects to which they are
subject. In particular, components may be prepared so as to be subjects to aspects,

4These three pillars are what Kiczales et al. describe in [KHH+01a] as the “three critical elements
[that] AO languages have”.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 33

for example via annotations or refactorings, but should not be prepared in a manner
that would couple them tightly with the behaviour of any potential aspect to which
they might be subject.5 This notion of obliviousness is one of the main assets of
AOP for improving the flexibility of software development. This means that, in
some cases, the integration of certain aspects into a final version of the code is
optional. However, failure to integrate some aspects might completely change the
behaviour of the application concerned. For example, an aspect that would check
the consistency of some data may be necessary to prevent faults, whereas an aspect
that would be used by the programmer for debugging rarely needs to be integrated
into the final version of a project.

Reasoning about aspects is still an open problem. Filman and Friedman pro-
posed that “better AOP systems [should be] more oblivious. They minimize the
degree to which programmers (particularly the programmers of the primary function-
ality) have to change their behavior to realize the benefits of AOP” [FF00]. However,
full obliviousness has proven to be difficult to achieve in practice. Decoupling
crosscutting concerns from the base system gives benefits in term of readability,
but full obliviousness can prevent the programmer of the advised units from know-
ing what will happen when these units are utilised, and in most cases will not be
free of undesired side-effects. Even in mainstream AOP languages such as AspectJ
(see Section 2.1.3), tools have been developed to assist programmers in knowing
the interactions between the aspects and the components. More recently, Kiczales
and Mezini [KM05] proposed a different way of reasoning about aspects, in which
“aspects cut new interfaces through the primary decomposition of a system. This implies
that in the presence of aspects, the complete interface of a module can only be determined
once the complete configuration of modules in the system is known. While this may
seem anti-modular, it is an inherent property of crosscutting concerns [...]”. Aspects
change the concepts of modules as they are used in procedural and object-oriented
languages, but provide the ability to view and to reason about cross-sections of the
system. Related work on aspects and modularity includes [Cli05], [Ald05] and
[SGS+05].

5When using annotations, these should reflect characteristics of the components rather than
implementation details regarding the aspects. The latter would imply code-tangling equivalent to
that of using compiler directives, as shown in Section 1.3.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 34

2.1.3 Languages and tools

Several aspect-oriented languages or frameworks have been developed. Aspects
must use a language to describe the actions to be performed by their advice. Ob-
viously, the components into which the aspects are woven are also written using
a language. The language used for both the components and the advice is usually
the same, and this is usually a general language such as C or Java. Most of the
aspect-oriented languages and tools are based on procedural, functional or object-
oriented languages that exist outside AOP. A list of aspect-oriented languages and
tools can be found on the Aspect-Oriented Software Development (AOSD) web-
site [AOS].

One of the most popular and most mature aspect-oriented languages is As-
pectJ [asp, KHH+01a]. The AspectJ project started at the Xerox Palo Alto Re-
search Center. Its leading researchers published some of the founding articles on
Aspect-Oriented Programming [KLM+97]. AspectJ is an aspect-oriented exten-
sion to Java. It uses regular Java statements to write the advice, but it defines a
few specific constructs for encapsulating aspects and for writing pointcuts. A sum-
mary of the syntax can be found in Appendix A. AspectJ uses a specific compiler
(a weaver), which produces standard bytecode that can be executed on any Java
virtual machine.

AspectJ mainly works on the interfaces of the classes. The basic join points
that AspectJ can use are calls to methods, executions of methods, accesses to fields,
instantiations of objects and executions of exception handlers. Pointcut descriptors
are then written as logical expressions defining which of these join points have to
be picked out. The selection is based on the name of the objects and methods
involved and on their signature, using regular expressions. It is also possible to
refine the conditions, for example by selecting certain calls only if they are called
from within the control flow of a particular method. The advice can be executed
before, after or around these pointcuts.

Aspects in AspectJ can be compared to classes in Java. AspectJ defines the
aspect keyword for declaring aspects. These aspects can contain pointcut de-
scriptors, advice and even regular Java fields and methods (which can be used by
the advice). Two examples of AspectJ’s syntax are shown in Listings 2.1 and 2.2.
The full reference and programming guide on AspectJ can be found on the official
AspectJ web-site [asp].

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 35

Listing 2.2 shows an example of around-advice. This kind of advice will be used
for parallelisation in the following chapters. An around piece of advice replaces the
execution of the intercepted join point. One of the principal AspectJ constructs
for around-advice is “proceed”. This keyword can only be used in around pieces of
advice. As its name indicates, it proceeds with the execution of the join point that
was intercepted. The main feature of proceed is that it takes arguments that must
match the parameters of the piece of advice. These arguments can be modified
before going ahead with the execution of proceed. In this example, proceed(v)
will execute the join point that consists of setting Test.value. However, proceed
replaces the values of the original pointcut arguments by its own arguments. In this
example, if v > AUTHORISED_MAX, the value AUTHORISED_MAX is going to be passed
to proceed, and the execution of the join point that corresponds to setting the
value of Test.value is going to use AUTHORISED_MAX for the new value, instead
of the original value of v. Moreover, the use of proceed is optional; not using it
implies that the join point advised is not going to be executed.

Along with compilers such as that for AspectJ, there exists a set of tools to
assist developers and designers in using aspect-oriented technologies. Eclipse6 is a
development environment that fully supportsAspectJ via theAspectJDevelopment
Tool (AJDT) [CCHW05], an optional plug-in. It can assist the development of
AspectJ projects with various features, such as showing graphically where the
aspects are woven in. Since development environments are often a matter of taste,
there exist similar AspectJ plug-ins for Emacs, JBuilder andNetbeans. Other tools,
such as “Aspect Browser”7, can help find crosscutting in existing Java projects by
producing representations similar to Figure 1.1.

2.2 Performance as an aspect

The aspect-oriented programming community has often cited performance as an
example crosscutting concern that could be encapsulated in an aspect. Most of the
recent work on performance with AOP consists of intervening at a coarse level,
for example by caching network transactions. This approach is too coarse for
most problems in scientific computation. This section reviews the few publications
related to the use of aspects for improving performance while achieving good

6Eclipse is an open-source project and can be downloaded from http://www.eclipse.org/.
7Aspect Browser can be obtained from http://www-cse.ucsd.edu/users/wgg/Software/

AB/.

http://www.eclipse.org/
http://www-cse.ucsd.edu/users/wgg/Software/AB/
http://www-cse.ucsd.edu/users/wgg/Software/AB/

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 36

Listing 2.1: Example of aspect, using AspectJ (before and after advice).
/**

* This simple class only contains a field.

* It can be used in various places in a larger program.

*/

public class Test {
public int value = 0 ;

}

/**

* This short aspect prints out ‘‘The value is going to be modified.’’

* each time the ‘‘value’’ field of any instance of ‘‘Test’’ is about

* to be assigned.

*/

aspect SimpleTracing {
/* This pointcut picks out all the points where the ‘‘value’’

field of any instance of ‘‘Test’’ is modified.

*/

pointcut modifyingValue(): set(int Test.value) ;

/* This piece of advice is executed before each join point picked

out by the pointcut defined above. The body of the piece of

advice is written as the body of a Java method would be.

*/

before(): modifyingValue() {
System.err.println ("The value is going to be modified.") ;

}
}

/**

* This aspect is similar to the aspect above, but it gets the

* context and prints out the new value as well.

*/

aspect TracingWithContext {
pointcut modifyingValue(): set(int Test.value) ;

/* This piece of advice also gets the argument to the setting of

the new value. This element of dynamic context can be used

from within the piece of advice.

*/

after(int v): modifyingValue() && args(v) {
System.err.println ("The new value is: "+v) ;

}
}

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 37

Listing 2.2: Example of aspect, using AspectJ (around advice).
/**

* This simple class only contains a field.

* It can be used in various places in a larger program.

*/

public class Test {
public int value = 0 ;

}

/**

* This aspect enforces a maximum value for the ‘‘value’’

* field of any instance of ‘‘Test’’.

*/

aspect SaturateValue {
pointcut modifyingValue(): set(int Test.value) ;

/* This piece of advice is executed instead of the action

* of setting the ‘‘value’’ field of any instance of ‘‘Test’’.

* ‘‘proceed’’ executes the intercepted join point, but

* replaces the value of the argument to ‘‘set’’.

*/

void around(int v): modifyingValue() && args(v) {
if (v > AUTHORISED_MAX)

proceed(AUTHORISED_MAX) ;
else

proceed(v) ;
}

}

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 38

program readability, in the context of numerical computing. Section 2.2.1 and
Section 2.2.2 present the publications relative to the use of aspects, respectively, for
loop fusions and for sparse matrix codes.

2.2.1 Aspects for loop fusion

An imageprocessing system is described in thefirstmajor paper onAOP[KLM+97]
(and in more detail in [MKL97]). The goal—or the main concern—of this applica-
tion is to apply transformations (filters) to black-and-white images. These images
can be large, and so a subsidiary goal is performance, achieved by using the memory
efficiently. The aim is to design software that will both satisfy these two concerns
and be easy to develop and maintain. Using the memory efficiently (thereby im-
proving performance) can be done by merging loops. This merging optimisation
can occur, for example, when several simple filters are combined to form a complex
filter: if possible, the loops that iterate through the pixels of the images are merged.

This image processing application, in both non-aspect-oriented and aspect-
oriented versions, was written in Lisp. In the non-aspect-oriented version, the
simple filters were written as procedures (see Figure 2.2) and the complex filters
were optimised by merging the loops manually. The complex filters are described
in Figure 2.3. This manual loop-merging optimisation gives rise to tangled code
(as shown in Figure 2.4), which makes it more difficult to understand how these
complex filters have been composed from simple filters.

(defun or! (a b)
 (let ((result (new-image)))
 (loop for i from 1 to width do
 (loop for j from 1 to height do
 (set-pixel result i j
 (or (get-pixel a i j)
 (get-pixel b i j)))))
 result))

the operation
to perform on
the pixels

loop over all
the pixels in the

input images

storing pixels in
the result image

 Starting from or! and other primitive filters, the programmer could work
up to the definition of a filter that selects just those black pixels on a horizontal
edge, returning a new image consisting of just those boundary pixels.

functionality implementation
pixelwise logical operations written using loop primitive as above
shift image up, down written using loop primitive;

slightly different loop structure

difference of two images (defun remove! (a b)
(and! a (not! b)))

pixels at top edge of a region (defun top-edge! (a)
 (remove! a (down! a)))

pixels at bottom edge of a region (defun bottom-edge! (a)
 (remove! a (up! a)))

horizontal edge pixels (defun horizontal-edge! (a)
 (or! (top-edge! a)
 (bottom-edge! a)))

Note that only the primitive filters deal explicitly with looping over the pix-
els in the images. The higher level filters, such as horizontal-edge!, are
expressed clearly in terms of primitive ones. The resulting code is easy to read,
reason about, debug, and extend—in short, it meets the first goal.

3.2 Optimizing Memory Usage

But this simple implementation doesn't address the second goal of optimizing
memory usage. When each procedure is called, it loops over a number of input
images and produces a new output image. Output images are created fre-
quently, often existing only briefly before they are consumed by some other
loop. This results in excessively frequent memory references and storage allo-

(Listing source: [KLM+97].)
This listing represents the or! operation (which takes two black-and-
white images and creates a new image that represents their pixel-wise
logical or) implemented as a procedure, in the simple version of the
application.

Figure 2.2: Procedural implementation of a simple filter.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 39

(defun or! (a b)
 (let ((result (new-image)))
 (loop for i from 1 to width do
 (loop for j from 1 to height do
 (set-pixel result i j
 (or (get-pixel a i j)
 (get-pixel b i j)))))
 result))

the operation
to perform on
the pixels

loop over all
the pixels in the

input images

storing pixels in
the result image

 Starting from or! and other primitive filters, the programmer could work
up to the definition of a filter that selects just those black pixels on a horizontal
edge, returning a new image consisting of just those boundary pixels.

functionality implementation
pixelwise logical operations written using loop primitive as above
shift image up, down written using loop primitive;

slightly different loop structure

difference of two images (defun remove! (a b)
(and! a (not! b)))

pixels at top edge of a region (defun top-edge! (a)
 (remove! a (down! a)))

pixels at bottom edge of a region (defun bottom-edge! (a)
 (remove! a (up! a)))

horizontal edge pixels (defun horizontal-edge! (a)
 (or! (top-edge! a)
 (bottom-edge! a)))

Note that only the primitive filters deal explicitly with looping over the pix-
els in the images. The higher level filters, such as horizontal-edge!, are
expressed clearly in terms of primitive ones. The resulting code is easy to read,
reason about, debug, and extend—in short, it meets the first goal.

3.2 Optimizing Memory Usage

But this simple implementation doesn't address the second goal of optimizing
memory usage. When each procedure is called, it loops over a number of input
images and produces a new output image. Output images are created fre-
quently, often existing only briefly before they are consumed by some other
loop. This results in excessively frequent memory references and storage allo-

(Source: [KLM+97].)
This table describes a few complex filters in terms of simple filters. This
is the non-optimised version of the procedural implementation. In this
version it is easier to read the composition of the horizontal-edge!
filter than in the optimised version shown in Listing 2.4.

Figure 2.3: Description of non-optimised complex filters.
cation, which in turn leads to cache misses, page faults, and terrible perform-
ance.
The familiar solution to the problem is to take a more global perspective of the
program, map out what intermediate results end up being inputs to what other
filters, and then code up a version of the program that fuses loops appropriately
to implement the original functionality while creating as few intermediate im-
ages as possible. The revised code for horizontal-edge! would look
something like:

(defun horizontal-edge! (a)
 (let ((result (new-image))
 (a-up (up! a))
 (a-down (down! a)))
 (loop for i from 1 to width do
 (loop for j from 1 to height do
 (set-pixel result i j
 (or (and (get-pixel a i j)
 (not (get-pixel a-up i j)))
 (and (get-pixel a i j)
 (not (get-pixel a-down i j)))))))
 result))

only three result
images are created

operations
from many
sub-filters

one loop structure
shared by many

component filters

Compared to the original, this code is all tangled up. It incorporates all the
different filters that horizontal-edge! is defined in terms of, and fuses
many, but not all, of their loops together. (The loops for up! and down! are
not fused because those operations have a different looping structure.)3 In
short, revising the code to make more efficient use of memory has destroyed the
original clean component structure.

Of course, this is a very simple example, and it is not so difficult to deal
with such a small amount of tangled code. But in real programs the complexity
due to such tangling quickly expands to become a major obstacle to ease of code
development and maintenance. The real system this example was drawn from
is an important sub-component of an optical character recognition system. The
clean implementation of the real system, similar to the first code shown above,
is only 768 lines of code; but the tangled implementation, which does the fu-
sion optimization as well as memoization of intermediate results, compile-time
memory allocation and specialized intermediate datastructures, is 35213 lines.
The tangled code is extremely difficult to maintain, since small changes to the
functionality require mentally untangling and then re-tangling it.

3 Our AOP-based re-implementation of the full application fuses these other loops as
well. We chose not to show that code here because it is so tangled that it is distractingly
difficult to understand.

(Source: [KLM+97].)
This is an optimised version of the horizontal-edge! filter described
in Figure 2.3. This version is tangled, and it is difficult to see the compo-
sition of this complex filter.

Figure 2.4: Optimised version of a complex filter.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 40

In the aspect-oriented version, the expression of complex filters is kept as simple
as possible and does not include their optimisation. Instead, fusing the loops for
improving performance is expressed as an aspect. The expression of filters in the
aspect-oriented version presents a few differences to the procedural version. “First,
filters are no longer explicitly procedures. Second, the primitive loops are written in a
way that makes their loop structure as explicit as possible” [KLM+97].

(define-filter or! (a b)
(pixelwise (a b) (aa bb) (or aa bb)))

(Source: [KLM+97].)
This listing represents the same operation as in Figure 2.2 implemented
for the aspect-oriented version. This second implementation uses the
separately defined construct “pixelwise”, which is an iterator that
“walks through images a and b in lockstep, binding aa and bb to the pixel
values, and returning an image comprised of the results” produced by the
operation defined in its third argument [KLM+97].

Figure 2.5: Implementation of a simple filter in the aspect-oriented version.

This change of abstraction, illustrated in Figure 2.5, gives rise to shorter pieces
of code by using powerful keywords. These keywords are easier to recognise
while encompassing a complex meaning. For example, “pixelwise” is another
abstraction for the two nested loops that represents the iteration through every
pixel of an image (such as in Figure 2.2). It is easier to recognise the “pixelwise”
construct (see Figure 2.5) than to analyse a block of instructions and to recognise
these two nested loops. This allows the weaver to analyse the components (in this
case, the filters) and apply the code transformations encapsulated in the aspects,
which are also written in Lisp. The readability is improved on two fronts: the
functional units are written using a simpler (but semantically richer) abstraction,
and the aspects represent the optimisation separately and thus avoid the tangling
of the code.

Although this example is not really a scientific application, the loop fusion
technique is relevant to the kind of optimisations that can be generally envisaged
in scientific software. The key to the success of this Lisp-based aspect-oriented
example (originally presented in [KLM+97, MKL97]) is the combination between
the adequate abstraction of the components and the ability that the aspects and
the compiler have for efficiently exploiting this abstraction. This satisfies the three

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 41

pillars presented in Section 2.1.2. In this AOP prototype, the fact that Lisp is an
interpreted language that can delay the evaluation of some parts of the program
makes it easier for the aspects to be woven in the components.

2.2.2 Aspects for sparse matrix code

Aspect-oriented programming has also been used for performance in another
branch of numerical software, in a project related to sparse matrix codes [ILG+97].
This project relies on its own specific language: AML (annotated Matlab8). This
language is similar to Matlab, but also allows the programmer to write annotations
that represent properties of sparse matrices. AML also extends the original Matlab
syntax with a new “for”-like construct (for nzs) that is meant to iterate only
through non-zero values of vectors. Two “aspects” can be used in AML: the data
representation format (to hide the complexity of the sparse matrix algorithms) and
the implicit permutations (since some operations require matrices to be presented
in a certain form, which can be obtained by multiplying by a permutation matrix).
These aspects facilitate the writing of sparse matrix algorithms as if these matrices
were dense. They are related to performance to the extent that sparse matrix code
avoids unnecessary computation, and they thus improve the performance of the
application.

Figure 2.6 shows an example of AML code that performs the LU factorisation.
This consists of decomposingmatrixA intomatricesL andU , so thatA = LU , with
L and U being respectively lower and upper triangular matrices. Extra constructs
are introduced to declare matrices as sparse and to use implicit permutations. These
annotations make it possible to hide the complexity of the code that would have
been required for dealing explicitly with the sparsity of the matrices. Here, for
example, “view A through p” is an abstraction that hides the fact thatA has to be
permuted from its sparse storage form into its usable form. This is done implicitly
between “view” and “end view”.

This work was originally presented as being aspect-oriented [ILG+97]. How-
ever, the use of annotations embedded in the functional units, and the fact that
the “aspects” (the permutations and the data storage format) are not flexible but
pre-defined in the weaver, conflict with the principle of transparency promoted by
AOP. Thus, this project has since been rejected as not being aspect-oriented by

8Matlab is a language dedicated to mathematics, and more particularly to matrices.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 42

the group at Xerox PARC [Lop02, Lop04], which includes some of the authors
themselves.

The use of annotations for sparse matrices can actually be compared to (non-
aspect-oriented) compiler directive techniques, such as those presented in Sec-
tion 1.3, in particular to the use of compiler directives in Fortran proposed by Bik
et al. [BBKW98] and presented in Section 1.3.3.

Created 08/20/97 4:02 PM John Lamping
Last saved 09/05/97 10:14 AM This copy printed 09/05/97 10:25 AM

Operator fusion aspect

The operator fusion aspect is responsible for indicating patterns of operations
that can be efficiently performed as a unit by library routines. Unlike the other
aspects, code for this aspect describes how to utilize the library in general, rather
than how to implement a part of a particular application program. Since it is the
library writer rather than the application programmer who writes the code for
this aspect, we don’t show it in this paper.

AML code for LU

The complete code for LU, using these languages, is:

function [L,U,p] = lu(A);
declare real sparse matrix A, L, U;
declare real scalar v;
declare int scalar m, n, j;
[m,n] = size(A);
L = zeros(n,n);
U = zeros(n,n);
declare permutation p;
p=[1:n];
view A,L,U through (p,:)
 for j = 1:n
 declare SPA t;
 view t through p
 t = A(:,j);
 for nzs k in order in t(1:j-1)
 t = t - t(k)*L(:,k);
 end;
 [v,piv] = max(abs(t(j:n)));
 piv = piv+j-1;
 p([j,piv]) = p([piv,j]);
 U(1:j,j) = t(1:j);
 L(j+1:n,j) = t(j+1:n)/t(j);
 end view;
 end;
end view;

The data representation declarations have been marked with a single bar to the
left. Double bars mark code that deals with implicit permutations, including
code in the component language that adjusts the permutation.

To our eye, this code does a good job of preserving the structure of the basic
algorithm while expressing the desired efficient implementation.

(Source: [ILG+97].)

Figure 2.6: Example of AML code: LU factorisation.

Even if it is not aspect-oriented, the “for nzs” construct in AML illustrates the
need for an appropriate abstraction in the base code, recognisable via the “aspects”.

CHAPTER 2. ASPECT-ORIENTED PROGRAMMING 43

2.3 Summary

This chapter has introduced the motivation for and main concepts of Aspect-
OrientedProgramming. It has also presentedAspectJ, an aspect-oriented extension
to Java, illustrated with a short example. Further information about AOP and
related tools can be found on the AOSDweb-site [AOS] and in the special issue of
the Communications of the ACM dated October 2001 [EFB01, EAK+01, LOO01,
OT01, BA01, KHH+01a, PC01, MWB+01, CKF+01, NEF01, GBNT01, Sul01,
NEF01, GBNT01, Sul01]. During the course of this project, several books or book
chapters on AOSD have been published. Some are specific to AspectJ [CCHW05,
Lad03], and others are more general, such as [PRS04]9, [FECA04], and [Mon05,
ch. 11].

The ability to characterise and recognise certain behaviours lies at the root
of AOP. Aspect-oriented implementations can be successful if the join points,
at which the aspects intervene, can be clearly expressed and characterised. This
characterisation is in terms of behaviour and abstraction of the components, rather
than by means of explicit mark-up annotations which are tightly coupled to the
implementation.

Explicit mark-up annotations or compiler directives, as shown in Section 2.2.2,
are more a means for expressing complex concerns in compact abstractions rather
than a means to separate concerns. Annotations neither entail the automatic recog-
nition of certain behaviour nor possess the flexibility of the aspect program.

The two examples presented in Section 2.2 come from articles published in
1997. Since then, little work on numerical optimisation has been done in the aspect-
oriented software community. Performance has been mentioned in several publica-
tions as an example of a type of aspect. However, most of the more recent work on
performance consists of improving performance at a coarser level, for example by
writing aspects to handle caching of network transactions, or caching successive re-
quests to complex methods [DHS+03]. AOP has also been used for (coarse-grain)
performance monitoring [DHS+03, Bod05] and profiling [PWBK05].

The loop fusion example (in Section 2.2.1) shows that AOP can be used in the
context of numerically intensive applications such as scientific software. Unfortu-
nately, it seems unrealistic to envisage that programmers of scientific software will
move towards a language such as Lisp.

9 This book is in French; a similar book by the same authors is available in English [PSR05].

Chapter 3

Join points for parallelism in AspectJ

The work presented in this chapter has led to the publication of an article pre-
sented at the 3rd InternationalConference onAspect-Oriented SoftwareDevelopment
(AOSD’2004) [HG04].

The join points that can be exploited by AspectJ (one of the most popular
aspect-oriented extensions to Java, see Section 2.1.3) are located at the interface of
the components (packages, classes or methods). They consist mainly of method
calls (and variations, such as calls to constructors) or field accesses. However, the
constructs that are usually interesting for parallelising an algorithm are “for” loops
and array accesses. Unfortunately, AspectJ does not recognise these constructs as
join points.

This chapter investigates how to circumvent this limitation. Section 3.1 shows
how AspectJ can be used to implement parallelism in scientific applications using
example codes from the Java Grande Forum benchmark suite [BSW+00, SB01,
SBO01, BSPF01]. It is found that the underlying abstractions for describing the
numerical concern can cause significant problems when writing aspects aimed at
parallelisation, and so Section 3.2 proposes object-oriented models for describing
loops, within which aspects can be woven.

3.1 Aspects for the Java-Grande Forum benchmark

suite

As has been shown in Section 1.3.4, parallelising Java applications can be achieved
by various means, but often leads to code-tangling. The Java Grande Forum

44

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 45

benchmark suite (see Section 1.3.4) comprises a set of applications that come in
three versions:

• the sequential version, which is aimed at single-processor machines;

• the multi-threaded version, which is parallelised using Java threads; and

• theMPJ version, which is parallelised using a Java version of MPI.

Some applications are provided in all three versions; the only difference between
the three are due to the extra statements introduced in the parallelised versions. As
has been shown in Figure 1.1, these extra statements are interlaced in the code that
describes what is to be computed, which corresponds to the sequential version.

This section investigates how AspectJ might be used to encapsulate the means
of parallelising the application in each version. The aim is to provide two aspects
that, if woven into the sequential version, would produce, respectively, the MPJ
version or the multi-threaded version.

The amount of refactoring required in the sequential version varies across the
benchmark suite codes, ranging from minor to major; three cases are taken as
representative of the extremes (Sections 3.1.1 and 3.1.2) and the middle ground
(Section 3.1.3).

3.1.1 Minor refactoring

The first chosen test case is the Crypt application (in Section 2 of the benchmark
suite). This consists of 5 Java files: JGFCryptBenchSizeA, JGFCryptBench-
SizeB, JGFCryptBenchSizeC, IDEATest.java and JGFCryptBench.java, and
uses classes of the provided jgfutil package, such as JGFInstrumentor (which
handles the timers and displays the results). It requires little modification before
aspects can be used for parallelisation.

The computationally intensive part of the program is the loop in
method void cipher_idea(byte[] text1, byte[] text2, byte[] key) in
class IDEATest. This method takes the data in parameter text1, enciphers it
with the key in parameter key and stores the results in the array defined by param-
eter text2. The method in the sequential version is written in the form shown in
Listing 3.1.

Since each iteration of this loop is independent from all others (i.e. the loop
is embarrassingly parallel), it is possible to spread the computation across several

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 46

processors by splitting the range of the loop index i into blocks. For example, the
multi-threaded version of Crypt is written so that there can be several instances
of the loop that start with i = ilow and stop when i ≥ iupper, for appropriate
(distinct) values of ilow and iupper, as shown in Listing 3.2.

Listing 3.1: Implementation of cipher_idea in the sequential version.
private void cipher_idea(byte[] text1, byte[] text2, int[] key) {

/* Declaration of local variables and initialisations */

...

for (int i = 0; i < text1.length; i += 8) {
/* Body of the loop */

...
}

}

In order to make it easier to write an aspect that can intercept the original
calls to cipher_idea and partition the loops, the sequential version, into which
aspects for parallelism may be woven, is refactored so as to allow both the original
use (from 0 to the total length of the text) and the use of blocks (from ilow to
iupper). The iteration space of the algorithm is thus accessible and modifiable from
the object interface, and can be partitioned by a parallelism aspect. This small
refactorisation is shown in Listing 3.3. This is the only modification that needs
making to the sequential version, and it neither breaks the original decomposition
nor introduces any code-tangling. After this, it is possible to write an aspect for
either parallelisation scheme (MPJ or multiple threads). These aspects implement
parallelism transparently with respect to the components that implement the calcu-
lation. Starting from a sequential version as a basis, the parallelisation concern can
be successfully encapsulated in aspects. This concern is no longer tangled within
the computation code, and the application is more flexible, since it can be compiled
so as to implement parallelism using whichever of the two techniques is desired.

The aspect for multi-threading, in Listing 3.4, uses an around piece of advice
for intercepting calls to cipher_idea(*, *, *, int, int) made from within
the original cipher_idea(*, *, *). These original calls are not executed, but
the advice proceeds with the execution of the refactored cipher_ideamethod via
inner instances of Runnable, each run in a Java Thread.

The aspect for the MPI-based parallelisation, in Listing 3.5, intercepts accesses
to portions of these arrays (divided across several processes using the Message

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 47

Listing 3.2: Implementation of cipher_idea in the multi-threaded version.
...

/* The cipher_idea method does not actually exist in the

multi-threaded version, but its equivalent is implemented thus:

*/

private void cipher_idea(byte[] text1, byte[] text2, int[] key) {
/* Declaration of local variables and initialisations */

...

for (int i = 1; i < /* Total number of threads */; i++) {
thobjects[i] = new IDEARunner(i, text1, text2, key);
th[i] = new Thread(thobjects[i]);
th[i].start();

}
thobjects[0] = new IDEARunner(0, text1, text2, key);
thobjects[0].run();

}
...

/**

The multi-threaded version uses class IDEARunner, implementing

Runnable, to split the loop across several Threads. The content of

this class is the same as the content of the cipher_idea method in

the sequential version, except that the bounds of the loops are

defined according to the thread id given to the constructor.

*/

class IDEARunner implements Runnable {
int id, key[];
byte text1[], text2[];

public IDEARunner(int id, byte[] text1, byte[] text2, int[] key) {
this.id = id;
this.text1 = text1;
this.text2 = text2;
this.key = key;

}

private void run () {
/* Declaration of local variables and initialisations */

...

ilow = id * slice;
iupper = (id + 1) * slice;
if (iupper > text1.length)

iupper = text1.length;

for (int i = ilow; i < iupper; i += 8) {
/* Body of the loop */

...
}

}
}

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 48

Listing 3.3: Re-factoring of cipher_idea for aspects.
...

/**

This is a new method whose behaviour matches the behaviour of

the original version. It is merely a call to the following method

with default values for the bounds.

*/

private void cipher_idea(byte[] text1, byte[] text2, int[] key) {
cipher_idea (text1, text2, key, 0, text1.length) ;

}

/**

This is an overridden method, with the original content (apart

from the loop bounds) and two extra parameters (the loop

bounds)

*/

private void cipher_idea(byte[] text1, byte[] text2, int[] key,
int ilow, int iupper) {

/* Declaration of local variables and initialisations */

...

/* Instead of ‘‘for (int i = 0; i < text1.length; i += 8)’’ */

for (int i = ilow; i < iupper; i += 8) {
/* Body of the loop from the original version*/

...
}

}
...

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 49

Listing 3.4: Example aspect for parallelising Crypt using multiple Java Threads.
public privileged aspect MultiThreadsCrypt {

private final int NUM_THREADS;

public MultiThreadsCrypt () {
NUM_THREADS = Integer.parseInt(System.getProperty("threads","1"));

}

void around(int ilow, int iupper) :
call(void IDEATest.cipher_idea(..))

&& args(*, *, *, ilow, iupper)
&& withincode(void IDEATest.cipher_idea(*, *, *)) {

Runnable[] runnables = new Runnable[NUM_THREADS];
Thread[] threads = new Thread[NUM_THREADS];

int tslice = (iupper - ilow) / 8;
int ttslice = (tslice + NUM_THREADS - 1) / NUM_THREADS;
int slice = ttslice * 8;

for (int k = 0; k < NUM_THREADS; k++) {
final int localilow = k * slice;
int iuppertemp = (k + 1) * slice;
if (iuppertemp > iupper)

iuppertemp = iupper;
final int localiupper = iuppertemp ;

runnables[k] = new Runnable() {
public void run() {

proceed(localilow, localiupper) ;
}

} ;
}

for (int k = 1; k < NUM_THREADS; k++) {
threads[k] = new Thread(runnables[k]);
threads[k].start();

}

runnables[0].run();

for (int k = 1; k < NUM_THREADS; k++) {
try {

threads[k].join();
} catch (InterruptedException e) {
}

}
}

}

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 50

Listing 3.5: Example aspect for parallelising Crypt using MPI.
public privileged aspect MPICrypt {

private int NUM_PROC;
private int rank;

pointcut mainMethodExecution():
execution(void JGFCryptBenchSize*.main(..));

void around(String[] arg): mainMethodExecution() && args(arg) {
try {

MPI.Init(arg);
rank = MPI.COMM_WORLD.Rank();
nprocess = MPI.COMM_WORLD.Size();

proceed(arg);

MPI.Finalize();
} catch (MPIException e) {

e.printStackTrace();
}

}

void around(): (call(* JGFInstrumentor.*(..)) ||
execution(* JGFCryptBench.JGFvalidate()))

&& cflow(mainMethodExecution()) {
if (rank == 0) {

proceed();
}

}

int p_array_rows;
int ref_p_array_rows;
int rem_p_array_rows;

byte[] p_plain1 = null;
byte[] p_crypt1 = null;
byte[] p_plain2 = null;

before(IDEATest idea): call(* IDEATest+.buildTestData())
&& withincode(* JGFCryptBench.JGFinitialise())
&& target(idea) {

p_array_rows = (((idea.array_rows/8)+NUM_PROC-1)/NUM_PROC)*8;
ref_p_array_rows = p_array_rows;
rem_p_array_rows =

p_array_rows - ((p_array_rows*NUM_PROC)-idea.array_rows);
if (rank == (NUM_PROC - 1)) {

if ((p_array_rows * (rank + 1)) > idea.array_rows) {
p_array_rows = rem_p_array_rows;

}
}

}

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 51

Listing 3.5 continued: Example aspect for parallelising Crypt using MPI.
before(): execution(void IDEATest+.buildTestData()) {

p_plain1 = new byte[p_array_rows];
p_crypt1 = new byte[p_array_rows];
p_plain2 = new byte[p_array_rows];

}

before(): execution(void IDEATest+.freeTestData(..)) {
p_plain1 = null ;
p_crypt1 = null ;
p_plain2 = null ;

}

pointcut doMethodExecution() : execution(void IDEATest +.Do());

byte[] around(): get(* IDEATest+.plain1)
&& withincode(void IDEATest+.Do()) {

return p_plain1;
}

byte[] around(): get(* IDEATest+.plain2)
&& withincode(void IDEATest+.Do()) {

return p_plain2;
}

byte[] around(): get(* IDEATest+.crypt1)
&& withincode(void IDEATest+.Do()) {

return p_crypt1;
}

void around(IDEATest idea): doMethodExecution() && target(idea) {
try {

int m_length;

MPI.COMM_WORLD.Barrier();

if (rank == 0) {
for (int i = 0; i < p_array_rows; i++) {

p_plain1[i] = idea.plain1[i];
}
for (int k = 1; k < NUM_PROC; k++) {

if (k == NUM_PROC - 1) {
m_length = rem_p_array_rows;

} else {
m_length = p_array_rows;

}
MPI.COMM_WORLD.Ssend(

idea.plain1,
(p_array_rows * k),
m_length,
MPI.BYTE,
k,
k);

}

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 52

Listing 3.5 continued: Example aspect for parallelising Crypt using MPI.
} else {

MPI.COMM_WORLD.Recv(p_plain1, 0, p_array_rows,
MPI.BYTE, 0, rank);

}

proceed(idea);

MPI.COMM_WORLD.Barrier();

if (rank == 0) {
for (int k = 0; k < p_array_rows; k++) {

idea.plain2[k] = p_plain2[k];
}

for (int k = 1; k < NUM_PROC; k++) {
MPI.COMM_WORLD.Recv(

idea.plain2,
(p_array_rows * k),
p_array_rows,
MPI.BYTE,
k,
k);

}
} else {

MPI.COMM_WORLD.Ssend(p_plain2, 0, p_array_rows,
MPI.BYTE, 0, rank);

}

MPI.COMM_WORLD.Barrier();
} catch (MPIException e) {

e.printStackTrace() ;
}

}
}

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 53

Passing Interface). This could have been effected in the original code, but it works
the same way in the refactored code, and thus allows the latter to be used as a multi-
purpose expression of the main computational concern, which can be targetted at
sharedmemorymultiprocessors or distributedmemorymulticomputers, as desired.

3.1.2 Major refactoring

The next attempt at using aspects for encapsulating parallelisation is the legacy
code LUFact in the JGF benchmark suite. This application is based on a Java
implementation of Linpack, which is originally “a collection of Fortran subroutines
that analyze and solve linear equations and linear least-squares problem” [DBMS].
Substantial refactoring is necessary simply to put this code in an object-oriented
form. Thereafter, a fundamental incompatibility is found between the mechanisms
for defining join points in AspectJ and the needs of the application.

As shown in its header comments, the Java version of LUFact is an adaptation
of a C version, which had itself been translated from Fortran. The result still
reflects the original coding style of the Fortran subroutines. Matrices and vectors
are represented by arrays of doubles; the dimensions of the matrices are not part
of their data representation, but an extra parameter given to the functions (it would
have been better to use the length of the Java array, or a field if the representation
was a class). Thus, although this example is valid for testing the performance of
JVMs against this kind of code, it does not provide a genuinely object-oriented
application; turning a function into a method does not make an object-oriented
design. As a result, the potential join points that would have been interesting for
parallelisation are for-loops and array accesses. However, these points are not join
points in AspectJ, which aims to use aspects only in truly object-oriented designs,
that is to say, when it is possible to work at object or interface level.

The possibility of having a join point for loops is investigated in Chapter 4.
However, the problem of identifying and selecting loops would remain: the se-
quences of instructions within Linpack procedures are too low-level to help iden-
tify the purpose of each instruction that uses the array representation. Unlike
the Crypt example, the multi-threaded LUFact implementation requires more than
identifying a tile in the iteration space; it also involves synchronising between se-
lected instructions that make accesses to the arrays. Because it is impossible to
distinguish between the various reasons for accessing arrays, it is impossible to
characterise which accesses are to be party to which synchronisations. Without a

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 54

meaningful abstraction, it is practically impossible accurately to recognise the sub-
operations and therefore to plan their parallelisation using aspects. Thus, without
completely re-writing LUFact with an adequate object-oriented abstraction, there
is nothing more that can be done using AspectJ.

3.1.3 Moderate refactoring

A third application, which appears at first sight to have an appropriate object-
oriented structure, is RayTracer. With a moderate amount of refactoring, this
might be expected to be amenable to parallelisation via aspects. However, it reveals
other problems.

RayTracer produces 2D bitmap images from 3D display models. The important
part for parallelisation is located in its method void render (Interval inter-

val); this is where the methods for computing pixel values are called, and where
the results are stored. The interval parameter is an object which defines the area
of the picture that is to be computed. Unfortunately, even in the multi-threaded
version, the data structure in which it was chosen to store the results is an array
declared as a local variable. Since the rendermethod is of type void, and its results
are stored in a local variable, the multi-threaded version never gathers the results
together so as to form the final picture. As a result, the synchronisation that should
have happened at the end of the computation is avoided. Both functional behaviour
and timing results are therefore questionable.

This problem can be solved by creating a new class, Image, which contains
an array field to store a picture, and by modifying the render method to become
void render (Interval interval, Image image), and have it save the results
in the image object. It would then be possible to create an aspect that would
replace the original calls to method render, and execute portions of the original
interval in multiple threads. The original multi-threaded version could have
used a data structure such as Interval to define the iteration space (and therefore
the partitioning and the scheduling of the tasks in the parallel versions) in both
sequential and parallel implementations. Conveniently, a tile of the iteration space
would also be a subset of pixels of the image rendered, since the computation is
embarrassingly parallel with respect to each pixel. Instead, the implementation
of the scheduling is scattered in the multi-threaded version: interval contains
a thread-id field which is used by render along with the total number of threads
obtained from a static field belonging to another class.

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 55

This application would need a better object-oriented design to both clarify the
sequential design and to improve the validity of its assessment of object-oriented
Java. It would then be possible to write aspects for implementing the two parallel
versions (using threads or MPI) in much the same way as shown in Section 3.1.1.

3.1.4 Aspects for the JGF benchmarks: summary

The underlying design of an application is crucial for allowing appropriate aspects
to be written. AspectJ is a general-purpose aspect-oriented extension to Java, and
it expects to work mostly on object or class interfaces. Unfortunately, not all Java
code has well-designed object and class interfaces, and many of the applications in
the Java Grande Forum benchmark suite are deficient in this respect.

Most C programs can be compiled by C++ compilers, but putting C state-
ments into a big C++ class does not turn a procedural implementation into an
object-oriented one. The same phenomenon happens in Java. Java was originally
designed to be an object-oriented language, but it is possible to program largemeth-
ods that are direct translations of C functions. Such programs are best described as
“procedural” Java programs. Measuring the performance of JVMs using this kind
of application is biased towards a programming style inherited from procedural lan-
guages. Benchmarking programs using abstractions that are more object-oriented
would test the suitability not only of the JVM but also of Java as an object-oriented
language for numerical computing.

For it to be feasible to parallelise using AspectJ, large tasks must make infor-
mation about their sub-division visible in their object interfaces. This requirement
entails only a minor modification to Crypt, making the iteration space parameter
accessible from the interface of one large method. A similar tiling of the iteration
space might have been achieved in RayTracer, after a few modifications. However,
“procedural” Java programs, like LUFact, that freely use loop-constructs and array
accesses, and that do not encapsulate small tasks into meaningful methods, make
it very difficult to encapsulate parallelisation using AspectJ aspects. The difficul-
ties encountered also suggest that the idea of writing aspects for implementing
performance should be envisaged from the early stages of the application design.

Where truly object-oriented designs have been developed for scientific code,
evidently there will be a need to traverse multi-dimensional structures using nested
for-loop constructs. Given that AspectJ will have difficulty intercepting the it-
erations of such constructs, this warrants further investigation. Note that the

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 56

successful refactoring of Crypt involved tiling of a 1-dimensional iteration space.
This is a special case of a classical technique for managing data parallelism over
multi-dimensional iteration spaces, and it suggests a generalisation that might read-
ily be put into truly object-oriented form. The next section thus investigates
alternative ways of representing 2-dimensional for-loops whose iterations can be
intercepted using AspectJ. Such alternative forms could potentially be used to solve
the problem found in RayTracer. Chapter 4 goes a step further and provides an
extension to AspectJ for a loop join point.

3.2 An object-oriented model for loops

This section proposes new representations for nested for-loops, which have a
structure appropriate to aspect-oriented parallelisation using AspectJ. The models
are designed in such a way that the points of the loops where the parallelisation
can happen are also valid AspectJ join points. The examples focus on rectangular
double-nested loops, with fixed bounds, which would usually be written in the
form shown in Listing 3.6. It is assumed that the different instances of the body
of the loop can be executed in no particular order; thus, executing the loop body
with certain values of i and j does not impact upon the execution of the same loop
body with other values of i and j (i.e. the loop nest is embarrassingly parallel).

Listing 3.6: Rectangular double loop nest in Java.
for (int i = minI; i <= maxI; i++) {

for (int j = minJ; j <=maxJ; j++) {
/* Loop body. Functions of i and j. */

}
}

Three object models for for-loops are introduced: RectangleLoopA (Sec-
tion 3.2.1), RectangleLoopB (Section 3.2.2) and RectangleLoopC (Section 3.2.3).
The evolution from form A to form C attempts to improve performance, based
on expectations about the JVM and any just-in-time optimisations. Actual perfor-
mance results are presented in Chapter 5, in particular in Section 5.6.

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 57

3.2.1 Model RectangleLoopA

The first model is the RectangleLoopA design pattern presented in Figure 3.1.
This consists of a delegation relationship between the following:

• the Runnable2DLoopBody interface for representing a double-nested loop
body;

• the RectangleLoopA class that is in charge of executing the iterations.

<<Interface>>

Runnable2DLoopBody

run(i: int,j: int) : void

RectangleLoopA

loopBody : Runnable2DLoopBody

minI : int

maxI : int

minJ : int

maxJ : int

run() : void

void run () {
 for (int i = minI; i<=maxI; i++)
 for (int j = minJ; j<=maxJ; j++)
 loopBody.run (i,j) ;
}

Figure 3.1: UML class diagram for model RectangleLoopA.

In this model, the body of the loop appears in the void run(int i, int j)

method of a class that implements the Runnable2DLoopBody interface. The i and j
parameters to the method are the loop indices of the associated double-nested for-
loop. An instance of RectangleLoopA holds an instance of Runnable2DLoopBody
(its loopBody attribute) and the bounds (minI, maxI, minJ and maxJ) of the
rectangle in the iteration space for which it is responsible. The run() method of
RectangleLoopA is a double-nested loop that executes the run(int i, int j)

in its loopBody attribute over the part of the iteration space defined by the bounds.
As an example of this scheme, the loop described in Listing 3.6 would be refactored
as shown in Listing 3.7.

Creation of an instance of RectangleLoopA, or a call to its run() method,
together with the dynamic context (in this case, the arguments to the construc-
tor), can be intercepted by an aspect in AspectJ. As a result, parallelism can be
implemented transparently in the nested loop structure.

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 58

Listing 3.7: Implementation of a double for-loop nest using RectangleLoopA.
class ConcreteLoopBody implements Runnable2DLoopBody {

...
public void run (int i, int j) {

/* Loop body. Functions of i and j. */

}
}

...
/* Where the regular for-loop would be */

Runnable2DLoopBody loopBody = new ConcreteLoopBody (...) ;
RectangleLoopA loop =

new RectangleLoopA (loopBody, minI, maxI, minJ, maxJ) ;
loop.run () ;
...

The RectangleLoopA implementation1makes one call per iteration to amethod
belonging to an external object (loopBody.run(i,j)). This is assumed to damage
performance, since it is doubtful that the JVM can optimise it.

3.2.2 Model RectangleLoopB

In order to address the above performance problem, the second model, Rect-
angleLoopB, does not use an external class, but defines its own abstract method
loopBody(int i, int j), which must be overridden in a sub-class so as to con-
tain the body of the loop. The UML class diagram is shown in Figure 3.2. The
delegation relationship of the previous model is replaced by an inheritance relation-
ship. According to this model, the implementation of a double-nested for-loop
should be of the form shown in Listing 3.8.

RectangleLoopB

minI : int

maxI : int

minJ : int

maxJ : int

run() : void

loopBody(i: int,j: int) : void

void run () {
 for (int i = minI; i<=maxI; i++)
 for (int j = minJ; j<=maxJ; j++)
 loopBody (i,j) ;
}

Figure 3.2: UML class diagram for model RectangleLoopB.

1See Listing C.1, in Appendix C.1.

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 59

Listing 3.8: Implementation of a double for-loop nest using RectangleLoopB.
class ConcreteLoopB extends RectangleLoopB {

...
public void loopBody (int i, int j) {

/* Loop body. Functions of i and j. */

}
}

...
/* Where the regular for-loop would be */

RectangleLoopB loop = new ConcreteLoopB (minI, maxI, minJ, maxJ) ;
loop.run () ;
...

The RectangleLoopB implementation2 makes one call to one of its own meth-
ods (loopBody(i,j)) per iteration. Again, the JVM optimisation is not pre-
dictable, but it is assumed that there is still some associated performance penalty.

3.2.3 Model RectangleLoopC

It is now assumed that both the above models prevent the JVM from performing
certain optimisations on loops, such as loop unrolling. Thus, in the third model,
RectangleLoopC, the regular structure of the inner (j) loop is maintained.3 The
UML class diagram is shown in Figure 3.3. According to this model, the imple-
mentation of a double-nested for-loop should be of the form shown in Listing 3.9.
In this model, the loopDoJRange(int i, int minJ, int maxJ)method has to
iterate through one “line” of the rectangle, from minJ to maxJ, using index i.

RectangleLoopC

minI : int

maxI : int

minJ : int

maxJ : int

run() : void

loopDoIRange(minI: int,maxI: int) : void

loopDoJRange(i: int,minJ: int,maxJ: int) : void

void run () {
 loopDoIRange (minI, maxI) ;
}

void loopDoIRange (int minI, int maxI) {
 for (int i=minI; i<=maxI; i++)
 loopDoJRange(i, minJ, maxJ) ;
}

Figure 3.3: UML class diagram for model RectangleLoopC.

2See Listing C.3.
3See Listing C.4.

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 60

Listing 3.9: Implementation of a double for-loop nest using RectangleLoopC.
class ConcreteLoopC extends RectangleLoopC {

...
public void loopDoJRange (int i, int minJ, int maxJ) {

for (int j=minJ; j <= maxJ; j++) {
/* Loop body. Functions of i and j. */

}
}

}

...
/* Where the regular for-loop would be */

RectangleLoopC loop = new ConcreteLoopC (minI, maxI, minJ, maxJ) ;
loop.run () ;
...

3.2.4 Object-oriented loops: summary

The above three models have been designed so that the iteration space and the
loop body of an embarrassingly parallelisable, double-nested for-loop can be en-
capsulated into an object. Creation and manipulation of such objects can then be
recognised in AspectJ aspects. Thus, AspectJ can be used to define a tile of the
iteration space originally defined in a sequential implementation, and parallelise the
loop accordingly.

Although model RectangleLoopA enforces a better separation of concerns by
using two classes to describe the boundaries and loop body, performance results
featured in Chapter 5 show that the required method calls to an external object are
too expensive. Models RectangleLoopB and RectangleLoopC both encapsulate
loop characteristics into a single class. However, although RectangleLoopC is
expected to give better timing results, the programmer has to write the inner loop
explicitly each time. Thus, model RectangleLoopB is arguably the best reusable
object-oriented pattern. As shown in Section 5.6.1.1, models RectangleLoopB and
RectangleLoopC produce similar performance results on the IBM JVM, but model
RectangleLoopC performs substantially better than RectangleLoopB on the Sun
JVM. (In both cases, the IBM JVM is faster than the Sun JVM).

CHAPTER 3. JOIN POINTS FOR PARALLELISM IN ASPECTJ 61

3.3 Summary

This chapter has proposed schemes for using AspectJ for encapsulating parallelism.
Section 3.1 has shown that this objective cannot always be achieved, in particular
if the underlying numerical model is not implemented in a object-oriented way.
Section 3.2 has proposed design patterns for describing loops in an object-oriented
manner, that can be handled by AspectJ. In both cases, the key idea is to make the
iteration space (and possibly the data) correspond to AspectJ join points, that is, to
make this information visible andmodifiable in the interface of the components, by
refactoring (parts of) the application. Chapter 5 presents performance evaluations
of such refactorings and subsequent advising of test-case applications.

The next chapter, Chapter 4, providesAspectJ with amodel of join point capable
of addressing loops directly in the code, so that refactorings can be avoided.

Chapter 4

A join point for loops in AspectJ

The work presented in this chapter has led to the publication of two articles pre-
sented, respectively, at the Foundations of Aspect-Oriented Languages workshop1

(FOAL’2005) [HG05] and at the 5th International Conference on Aspect-Oriented
Software Development (AOSD’2006) [HG06].

When parallelising code in order to improve performance, loops are the natural
places tomake changes. There are sometimes several alternativeways of parallelising
the same loop, depending on various parameters, such as the nature of the data being
processed, or the architecture on which the application is going to be executed. In
certain cases, it is possible to use aspects for parallelising loops, in particular for
choosing a method of parallelisation, as shown in Chapter 3. However, since
there is currently no join point for loops in AspectJ [KHH+01b], the method
proposed in Chapter 3 resorts to refactoring the base-code. In order to eliminate
this inconvenience, this chapter proposes a loop join pointmodel for AspectJ which
allows direct parallelisation of loops, without refactoring of the base-code.

Section 4.1 presents the loop join point model and the kind of loops it aims
to recognise. Although it is based on Java and AspectJ, the model can potentially
be applied to other languages. Section 4.2 explains why the approach is based on
the bytecode and not on the source code. Section 4.3 presents the model from the
point of view of an aspect compiler, and explains the join point shadow. Section 4.4
enhances the join point model with a relation to the data handled by the loops.
Section 4.5 explains the specific requirements for loop selection, and describes
the associated difficulties, compared with other kinds of join points. Section 4.6

1FOAL’2005 was held in conjunction with the 4th International Conference on Aspect-Oriented
Software Development (AOSD’2005).

62

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 63

Listing 4.1: Example of Java for-loops iterating over a Collection.
/* Since Java 5 */

Collection<ExampleClass> c ;
for (ExampleClass obj: c) {

/* Do something with obj */

}

/* Before Java 5 */

Collection c ;
for (Iterator it = c.iterator() ; it.hasNext();) {

ExampleClass obj = (ExampleClass)it.next() ;
/* Do something with obj */

}

describes some of the resulting problems related to base-code which throws excep-
tions. Section 4.7 introduces LoopsAJ, a prototype implementation, based on abc,2

of a weaver capable of handling the loop join point model. Section 4.8 embellishes
the join point model with reflective capabilities, so that further information about
the loop can be obtained by the aspect. Section 4.9 shows how to write aspects for
parallelisation using the loop join point. Section 4.10 briefly introduces ideas for
other potential fine-grained join points, namely a “loop-body” join point and an
“if-then-else” join point.

4.1 The loop join point model

This section presents the objective of the loop join point model. This objective
consists of defining: (a) the behaviour the model aims to recognise, and (b) its dy-
namic (run-time) characteristics, that is, providing the join point with an execution
context. The resulting model could be applied to various aspect-oriented systems,
but the presentation focusses on AspectJ.

Java 5 offers an enhanced for statement, similar to “for-each” constructs in
other languages [BB04, GJSB05], as shown in Listings 4.1 and 4.2. Although this
is a general purpose construct, the behaviour it defines is ideal for parallelisation
because this construct encapsulates both the iterative structure and the associated
data that are to be processed. This “for-each” abstraction is used below as a basis
for the loop join point model.

2http://www.aspectbench.org/

http://www.aspectbench.org/

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 64

Listing 4.2: Example of Java for-loops iterating over an array.
/* Since Java 5 */

ExampleClass[] a ;
for (ExampleClass obj: a) {

/* Do something with obj */

}

/* Before Java 5 */

ExampleClass[] a ;
for (int i = 0 ; i < a.length ; i++) {

ExampleClass obj = a[i] ;
/* Do something with obj */

}

For iterating over the elements of a Collection or of an array, the loop con-
structs prior to Java 5 rely on the abstraction provided by an Iterator or by an
array index, respectively. The enhanced for statement in Java 5 puts emphasis on
the data processed by the loop (the Collection or the array) rather than on the
means of access to the data (the Iterator or the array index). The data to be
processed is directly and explicitly included in the way the for-loop is written in
the source code. This new abstraction is solely a source-code enhancement; the
bytecode still contains Iterators (for Collections3) or local int variables (for
array indices).

It can also be useful for parallelisation to recognise a “weaker” form of loop,
namely for-loops that do not explicitly iterate over a Collection or an array, but
still use an Iterator or an int index.

The loop join point model should make it possible to extract information
regarding the execution context at the join point. This information should contain
the iteration space (that is to say, the instance of Iterator or the range of integers).
For the “stronger” form of loops, it should also include the data being processed
(that is to say, the specific instance of Collection or the array). The execution
context is particularly useful for selecting loops, as shown in Section 4.5.

3 Java 5 also provides a new interface called java.lang.Iterable<T> [GJSB05, Section 14.14.2],
which contains a single method signature: Iterator<T> iterator(). java.util.Collection
and other methods in the Java Collection Framework have been retrofitted to implement this in-
terface (see http://www.jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.
html). The enhanced for construct can be used with Iterables that would not be Collections.
In the context of Java 5, Iterable could be used wherever Collection appears in this chapter.

http://www.jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html
http://www.jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 65

“Strong” form “Weak” form

// Collection c = ...

Iterator it = c.iterator() ;
while(it.hasNext()) {

Ex obj = (Ex)it.next() ;
/* Do something with obj */

}

// Iterator it = ...

while(it.hasNext()) {
Object obj = it.next() ;
/* Do something with obj */

}

Context: Collection and Iterator. Context: Iterator.

// Ex[] a = ...

for (int i=0 ; i<a.length ; i++){
Ex obj = a[i] ;
/* Do something with obj */

}

for (int i=MIN ; i<MAX ;i+=STRIDE){
/* Do something */

}

Context: array, min, max and stride. Context: min, max and stride.

Figure 4.1: Summary of the patterns to be recognised by the loop join point model.

A summary of the forms of loop that the join point ought to recognise is
presented in Figure 4.1. Further details on recognising the loops and on exposing
the context are presented in Sections 4.3 and 4.4, respectively.

4.2 From source or from bytecode

Although this may seem to be an implementation decision, choosing whether the
join point is recognised at source code level or at bytecode level may completely
change the model.4 The way loops are programmed in Java is not necessarily
directly reflected in the generated bytecode. For example, instinctively, most Java
programmers would consider the body of a for-loop to be the lines of code within
the curly brackets following the for(;;) statement. However, a loop with the
same effect can also be written in different ways, for example as a while-loop, or
with some of the for statements displaced, as shown in Listing 4.3.

In addition, the main conditional expression of a loop may encompass several
instructions, in particular when it involves a call to a method or a complex expres-
sion, as shown in Listing 4.4. Although the condition may not seem to be part of
the loop body, it could always be refactored so as to be so (for example through a
temporary boolean variable). Moreover, the compiled code does not necessarily
reflect the way a complex expression has been written in the source code.

4See Appendix B for a description of one possible scheme based on recognition of join point
only at the source-code level.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 66

Listing 4.3: Simple examples of equivalent loops.
for (int i = 0 ; i < MAX ; i++) {

/* A */

}

int j = 0 ;
int STRIDE = 1 ;
for (; j < MAX ; j += STRIDE) {

/* A */

}

int k = 0 ;
while (k < MAX) {

/* A */

k++ ;
}

Listing 4.4: Loop with more complex conditions.
int i = 0 ;
while (condition(i) || (i<10)) {

/* A */

i++ ;
}

int j = 0 ;
boolean ok = condition(j) || (j<10) ;
while (ok) {

/* A */

j++ ;
ok = condition(j) || (j<10) ;

}

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 67

Since the main concern is to recognise the behaviour of the code, rather than
the way it was written, the choice has been made to base the representation of
loops at the bytecode level rather than at the source code level. As a result, the
representation is more robust to variations in programming style. However, this
choice introduces limitations regarding (a) the potential specific handling of an
abrupt exit5 (see Section 4.3.3), and (b) the nature of the control-flow graphs.
Indeed, as explained in more detail in Section 4.6, the loop join point model expects
a reducible (or well-structured [ASU85, Muc97]) graph. Java source-code produces
bytecode with reducible control-flow graphs, but this is not necessarily the case for
bytecode produced by other means.6

Abytecode approach also follows the evolution of AspectJ, which, since version
1.1, does the shadow-matching and weaving only at bytecode level [HH04].

4.3 Shadow matching: recognising the loops

This section describes the way the loops are recognised: specifically, how the
shadows of the loops are identified. The shadow of a join point is defined as follows:
“[A] join point is a point in the dynamic call graph of a running program [...]. Every
[such] dynamic join point has a corresponding static shadow in the source code or
bytecode of the program. The AspectJ compiler inserts code at these static shadows in
order to modify the dynamic behavior of the program” [HH04].

Although the aim is to recognise loops of the forms presented in Section 4.1, this
section investigates various forms of loop with respect to their ability to constitute
a basis for a loop join point model. The main requirements for a join point shadow
are:

1. the ability to weave before-advice, after-advice and around-advice;

2. the ability to extract the context of execution at the join point.

5Abrupt exits are due in particular to break statements [GJSB05, Section 14.15], and are different
from exits due to exceptions. The remainder of this chapter, apart from Section 4.6, does not take
exceptions into account.

6 Certain representations of control-flow graphs can be non-reducible if exceptions are taken
into account.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 68

(a) (b)

Figure 4.2: Control-flow graph (a) and dominator tree (b) for a simple for-loop.

4.3.1 Dominators, back edges and natural loops

The initial approach for finding loops analyses the control-flow graph (constructed
from the bytecode) and follows the method described in [ASU85, Muc97]. This
method is based on finding dominators and back edges, defined as follows: “Node d
of a flow graph dominates node n [...] if every path from the initial node of the flow
graph to n goes through d. [... The] edges in the flow graph whose heads dominate their
tails [are called] back edges. (If a→ b is an edge, b is the head, a is the tail. [... Also,
a is a predecessor of b, and b is a successor of a ...]) Given a back edge n→ d, we
define the natural loop of the edge to be d plus the set of nodes that can reach n without
going through d. Node d is called the header of the loop” [ASU85]. By their very
definition, dominators form a tree structure, called the dominator tree.

Figures 4.2(a) and 4.2(b) represent, respectively, the (block-level7) control-
flow graph and the associated dominator tree for the simple for-loop shown in
Listing 4.3. In this example, the only back edge is 3 → 2, and its natural loop
comprises blocks (nodes) 2 (which is the header) and 3.

Natural loops can be confusing because there could be several loops with the
same header. As shown in Figure 4.3, what appears to be a single loop actually cor-
responds to two natural loops sharing the same header. In such a case, defining the
points immediately before or after a natural loop would be ambiguous. Therefore,
instead of using natural loops for the join point model, the union of all the natural
loops sharing the same header is considered as a single combined loop. In order to
avoid ambiguous cases, implementations should consider a node containing only an
unconditional goto as being the same node as its successor node. In the remainder

7i.e., the nodes of the control-flow graph are basic blocks [ASU85] of code statements.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 69

int i = 0 ;
while (i<MAX) {

if (cond(i++)) {
/* A */

} else {
/* B */

}
}

Figure 4.3: A combined loop consisting of two natural loops with the same header.

of this chapter, the term “loop” will be used to mean a “combined loop”, unless
otherwise stated.

Following this style, an inner loop is a loop whose blocks are all contained within
another loop, but do not share the latter’s header. This also happens to match the
natural definition of inner loops at the source-code level.

In the following sections, three categories of loops are presented, together
with characteristics pertinent to their possible use as join points. The categories
introduce increasing degrees of constraint which affect their ability to weave the
three forms of advice: before, after and around. The loops that are to be recognised
by the loop join point model, as described in Section 4.1, fall into the third category.

4.3.2 Loops in the general case

A loop always has a unique entry point, namely its header. Before-advice can
therefore always be woven in a pre-header, that is, a node (block) inserted before
the header to which the jumps from outside the considered loop are redirected, but
the jumps from inside it are not, as shown in Figure 4.4.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 70

Figure 4.4: Insertion of a pre-header.

Without further constraint, it cannot be guaranteed that there is a unique point
in the control flow that is executed immediately after execution of a loop. In order
to introduce appropriate constraints, the following definitions are added. A node
in a loop is an exit node if it can branch outside that loop. A node outside a loop
which has predecessors inside that loop is termed a successor node of the loop.

Typically, a non-nested loop which contains a break statement has two exit
nodes and one successor node, while a double loop nest with a break statement
in the inner loop that branches outside the outer loop has two exit nodes and
two successor nodes. For example, Figure 4.5 shows the source code and the
corresponding (block-level) control-flow graph for a double loop nest in which:

• the inner loop consists of blocks 4, 5 and 6; its exit nodes are blocks 4 and 5;
its successor nodes are blocks 7 and 8; and

• the outer loop consists of blocks 2, 3, 4, 5, 6 and 7; its exit nodes are blocks
2 and 5; its (sole) successor node is block 8.

In this case, “after” the inner loop ({4, 5, 6}) is both on edge 4 → 7 and on edge
5 → 8.

In such cases, where there are several successor nodes, there are multiple points
corresponding to the transition from blocks within the loop to blocks outside
the loop: weaving an after piece of advice would require replication of the woven
code at all edges between exit nodes and their successor nodes. Although it is,
in principle, possible to achieve this, some aspect-oriented tools do not allow this
kind of weaving.

More fundamentally, weaving around-advice into this kind of loop would not
be possible, even theoretically. Indeed, the execution of an around piece of advice

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 71

int i = 0 ;
outerloop:
while (i < maxI) {

int j = 0 ;
while (j < maxJ) {

if (c(i,j))
break outerloop ;

j++ ;
}
i++ ;

}
/* A */

Figure 4.5: Two nested loops with a break statement jumping outside the outer-
loop.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 72

returns to the point where the original join point would have returned (i.e. just after
where proceed() returns8). Although it is possible to get and change the value
returned by the original join point with proceed(), there is no mechanism to allow
several return points from proceed(). Using proceed() in an around-advice is
not even compulsory: where would the control-flow be redirected in a case where
proceed() is not used and there are several potential successors?

4.3.3 Loops with a unique successor node

Theproblemofhavingmultiple successor nodes occurswhen there are nestedbreak
or continue statements that branch outside the inner-most loop to which they
belong. The default case (of a break statement with no label specified) corresponds
to an exit node that branches outside the loop, but to the same successor node as
the normal exit would go, as long as nothing is executed between the branching
test and the break statement itself.

In this case, weaving an after piece of advice could be done either at the end
of each exit node (possibly at multiple points, as described previously) or at the
beginning of the (unique) successor node (which thus guarantees a single weaving
point). Weaving an after-advice (at a single weaving point) therefore consists of
inserting a pre-successor, i.e., a new node inserted prior to the successor node, to
which the jumps from the exit nodes to the (unique) successor node are redirected.

A loop with a unique successor node can also be reduced to a single node in the
control-flow graph. This then makes it possible to weave an around-advice at the
join point for the loop.

Just as there are two different constructs for writing after-advice, depending on
whether the execution returns normally or throws an exception9, so might abrupt
exits (due to break statements) be handled differently. However, there are cases
where it is not possible to tell from the bytecode how such exits would differ from
those due to themain condition of the loop evaluating to false. This is a limitation
that might have been avoided if a source-code representation had been used, but
it does make the model robust to changes in programming style, as illustrated by
the code in Listing 4.5. The two loops in this listing might well produce the same
bytecode and control-flow graph, in which case the use of break would not be

8See Sections 2.1.3 and A.4.
9“after() returning(...):” executes the advice after a normal execution, “after() throw-

ing(...):” executes the advice if an exception has been thrown, and “after():” executes the
advice in both cases.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 73

Listing 4.5: Illustration of a possible special handling of break statements.
while (a && b) {

/* Do something */

}

while (a) {
if (!b)

break ;
/* Do something */

}

distinguishable from the use of the “&&” operator. It would thus be impossible to
treat an exit from the loop due to the break statement any differently than an exit
from the loop due to b evaluating to false.

4.3.4 Loops with a unique exit node

Having a unique exit node makes it possible to identify the variables required for
the context exposure, as presented in Section 4.4. In particular, it is possible, from
a single exit condition, to predict (as far as possible) that the loop iterates over
an Iterator or over a specific range of integers (see Sections 4.1 and 4.4). The
full potential of a loop join point can only be exploited if its model comprises
information regarding the behaviour of the loop. Moreover, however clever the
prediction and the context exposure may be, the programmer of an aspect dealing
with loops might want to handle cases where there is no possibility of an abrupt
exit (i.e., there is no break statement in the loop).

As shown in Listing 4.5, loops with complex conditions (in particular expres-
sions comprising and and or operations) may create several exit points, and thus
be ineligible for this category. From the point of view of the programmer, loops in
this category are the loops without break statements and whose exit condition is
equivalent to a single evaluation (this includes method calls or complex conditions
that must be fully evaluated, via a boolean variable, for example). The loops in
Figure 4.1 are a special case of this category, to the extent that specific types and
ordering of the iteration space are expected.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 74

Before After Around Context
exposure

several successor nodes
√

multiple weaving
points

× ×

several exit nodes, 1
successor node

√ √ √
×

1 exit node, 1 successor
node

√ √ √ √

Table 4.1: Different loop types and their weaving capabilities.

4.3.5 Summary

Three categories of loops have been identified, with increasing degrees of constraint.
Although only the last form (unique exit node) is suitable for the main objective
given in Section 4.1, all three forms could be implemented by a different pointcut,
each with different meaning and weaving capabilities. The more general form (sev-
eral successor nodes possible) would only allow the weaving of before-advice, and
possibly after-advice if the implementation of the weaver allows multiple weaving
points. The intermediate form (unique successor node possible) and the restricted
form (only one exit node and one successor node) would allow the weaving of
before-, after- and around-advice. The latter also guarantees that there is a single
condition for exit from the loop.

The above situation is summarised in Table 4.1, which also shows the context
exposure capabilities, as described in Section 4.4.

4.4 Context exposure

Although loops do not have arguments in the same way that other join points
(such as method calls) do, they often depend on contextual information to which
programmers may want access. In particular, two forms of contextualised loop are
frequently found, namely:

• loops iterating over an Iterator, and

• loops iterating regularly over a range of integers.

Knowing that a loop is of one of these forms allows one to determine, at compile-
time, the execution behaviour of the loop in some detail. The Iterator or the
range of integers can be considered as a first set of arguments of the loop (see

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 75

Section 4.4.1). In order to make these compile-time predictions meaningful, only
loops with unique exit points and unique successors are considered for context
exposure. This exempts from consideration loops which have any potential abrupt
exits (e.g., using break statements); a potential use of break would make the
finding of a range of integers or of an Iterator less useful, since the loop might
exit before the anticipated end.

In addition, the data treated by the loops may be of interest, in particular
for applications that need to know on what part of the data the loop is working
(for example, parallelisation using MPI). This can form another set of contextual
arguments for the loop (see Section 4.4.2).

4.4.1 Iteration space

4.4.1.1 Loop iterating over a range of integers

Loops iterating over a range of integers, following an arithmetic sequence, are
one of the most common forms of loop. They consist of: initialising an integer
local variable before the loop; incrementing this variable by some constant value
(the stride) at the end of each iteration; and exiting the loop when the value
reaches a given maximum value. This form of loop follows the pattern shown in
Listing 4.3. This category of loop is similar to the “trivial” loops that are the target
of parallelisation when using javab (a bytecode parallelisation tool) [BG97].

As explained in Chapter 3, exposure of the iteration space is essential to make
it possible to write aspects for parallelisation. The initial value, the stride and
the final value will be available in the execution context of the loop join point
model, whenever possible. Since these values are parameters ruling the execution
of the loop, they could be considered, in aspect-oriented models such as AspectJ,
as “arguments” of the loop.

Knowing in advance what the range of integer values is going to be when the
loop is executed is not always possible. In order to be exposed to the join point
model, these values have to be determinable before the join point is encountered.
The availability of these values will depend on the capabilities of the static analysis
implemented in the shadow matcher. Determination of these values ought to
be implemented in a conservative way, discarding the cases where it cannot be
guaranteed that the values will not change during the execution of the loop.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 76

4.4.1.2 Loop iterating over an Iterator

Another frequent form of loop (found in particular in Java programs) is that
conducted by an Iterator. In amanner similar to that presented in Section 4.4.1.1,
the instance of Iterator controlling the loop can be seen as an “argument” to be
included in the join point context.

4.4.2 “Iterable” data

Both forms of loop presented in Section 4.4.1 may correspond to a “strong” form
of loop, as shown in Section 4.1. The range of integers, or the Iterator, may
correspond to an array or, respectively, to a Collection. According to the Java
5 terminology, they can be considered as “iterables”. Again, exposing this extra
information may be useful, for example for certain parallelising schemes which
require the programmer to transfer data between processing units explicitly (e.g.
MPI), or for loop selection, as explained next.

4.5 Loop selection

This section analyses, and proposes solutions to, the problem of writing pointcuts
for loops. In particular, the aim is to determine which characteristics can be used for
making a loop selection. In aspect-oriented systems such as AspectJ, the means of
selection for a join point is, in most cases, ultimately based on the naming of some
source element characterising the join point, possibly using a regular expression.
For example, to advise a method call or a group of methods, the pointcut has to
contain an explicit reference to some names characterising the method signatures,
whether it be a patternmatching the name of themethods, or a patternmatching the
parameter types. Since loops cannot be named, it is impossible to use a name-based
pattern to write a pointcut that would select a particular loop.

Neither loop labels, nor Java 5 (or C#) metadata, can be used to identify a
particular loop in a method. Firstly, the loop labels will not be kept in the bytecode
(and, in any case, they are rarely used, unless motivated by a break statement
branching outside an inner loop). Secondly, Java 5 metadata cannot be applied to
statements (apart from variable declarations).

If it is known for certain that all the loops within a method are to be advised, it
would be possible, in AspectJ, to use pointcut constructs such as withincode

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 77

or cflow10 to restrict the pointcut to all the loops contained in the methods
traditionally picked up by those constructs. However, selecting only one of several
loops within the same method turns out to be impossible without any further
mechanism.

In order to solve this problem, it is proposed that selection of loops is made to
rely on the data being processed, as well as the method in which it is located. In this
case, the context —or what are called the “arguments” of the loop in Section 4.4—
can be used to refine the selection. For example, the programmer might want to
write a pointcut that would select only loops iterating over a specified range of
integers, over a particular array, or over a particular Collection. Such an example
is shown in Listing 4.11 (Section 4.9), in which the parallelising advice applies only
to arrays of bytes.

More speculatively, there might be a potential application for metadata, which
could be introduced in the declarations of the local variables that refer to the arrays,
Collections or Iterators utilised as “arguments” to certain loops. Also, a data-
based selection would benefit from a dflow pointcut, as described in [MK03].

In cases where the loop that is to be selected is within a loop nest, more selective
cflow expressions could be used, for example using more expressive control-flow
languages [DT04].

4.6 Issues related to exceptions

Without distinguishing edges due to exceptions from normal edges in the con-
trol flow graph, the model may not work properly in certain cases that involve
exceptions.

Firstly, exceptions are handled by traps according to the position in the byte-
code at which they are thrown. Each trap handles a linear portion of the bytecode,
described only by a beginning and an end instruction. Thus, weaving may insert
code within the range of a trap when this may not have been intended. Secondly,
combined loops correspond approximately to loops written in the source code,
as long as the graph is reducible (or well-structured). Because there is no “goto”
statement [ASU85, Ch 10.4] in the Java language, this is the case for bytecode

10See Appendix A.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 78

produced from Java source code.11 However, taking exceptions into account (as
possible causes for loops) adds extra edges to the graph. In the Soot representa-
tion [RH98]12, on which the prototype implementation presented in Section 4.7
relies, this may make the graph non-reducible [Jor03]. The main characteristics of
non-reducible graphs are that: (a) loops may have several headers; and (b) there
are still cycles in the graph after all the back edges have been removed.

As an illustration of the problems of exceptions, Listing 4.6 shows an example of
code that involves loops and exceptions (taken from [MH02, Mie03]). Figure 4.6
shows the corresponding block-level control-flowgraph for this example (including
exceptions, shown as dashed lines) using the Jimple intermediate representation, as
produced by the control-flow graph viewer included in the Soot framework.13

This example demonstrates what would happen if edges due to exceptions were
treated as regular edges, and could therefore belong to loops. Without entering
into the details of the syntax of Jimple, in this example, i0 and i1 represent i and
j, respectively, in the Java source-code.

Listing 4.6: Example of nested loops involving exceptions.
public int foo (int i, int j) {

while (true) {
try {

while (i < j)
i = j++/i ;

} catch (RuntimeException re) {
i = 10 ;
continue ;

}
break ;

}
return j ;

}

The back edges found using the method described in Section 4.3.1 are 4 → 1

and 5 → 5. The graph is not reducible because, after these back edges have been
removed, a cycle made of nodes 1 and 5 exists. This gives a loop comprising nodes

11The use of Java bytecode obfuscators, which aim to prevent “easy” decompilation, might
introduce “goto” statements into the bytecode, which may make the corresponding graph non-
reducible.

12Soot is a Java bytecode analysis and transformation framework. It can be found at http:
//www.sable.mcgill.ca/soot/.

13This corresponds to the representation of soot.toolkits.graph.ExceptionalBlockGraph,
in Soot 2.1.0.

http://www.sable.mcgill.ca/soot/
http://www.sable.mcgill.ca/soot/

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 79

Figure 4.6: Complete block-level control flow graph.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 80

1, 2, 3 and 4 —which corresponds to “while (i<j) i=j++/i;” in the source-
code— and another loop comprising node 5 (which handles the exception in the
source-code) only. Although the first loop is meaningful, and corresponds to what
would be naturally expected by looking at the source-code, the second would cause
before-advice to be inserted just before the exception is caught, and after-advice just
before “continue” (without even dealing with the correctness of trap handling).
This effect would not necessarily be meaningful or useful for advising this loop.

Moreover, such code is not robust to changes of compilation strategy. For ex-
ample, a different compiler might insert an extra, “useless” goto statement between
nodes 0 and 1 in this graph, yielding the control-flow graph shown in Figure 4.7.
In this case there is a third back edge (5 → 8), which gives a natural loop that could
be assimilated into the outer “while(true) { ... }” loop in the source-code.
The method based on these control-flow graphs is not suitable for cases involving
exceptions, since the loop join point model should depend as little as possible on
the compilation strategy utilised and on the way branches due to exceptions are
represented in the graph.

Figure 4.7: Another possible control-flow graph.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 81

The problem with exceptions lies in the edges they add to the
graph in the Soot representation [Jor03]. The documentation for class
soot.toolkits.graph.ExceptionalUnitGraph 14 states: “For every Unit which
may implicitly throw an exception that could be caught by a Trap in the Body, there
will be an edge from each of the excepting Unit’s predecessors to the Trap handler’s first
Unit (since any of those predecessors may have been the last Unit to complete execution
before the handler starts execution).” The edges coming from these predecessors that
do not throw exceptions distort the dominator tree when trying to find the back
edges. A possible solution would be to change this representation and to introduce
separate nodes for throwing exceptions. For each node A that could potentially
throw an exception represented as an edge from A to B, a new node EA would be
inserted before A, so that all the edges pointing to A would be redirected to EA,
and an extra edge EA → B would be added. The resulting control-flow graph for
the example in Listing 4.6 is sketched in Figure 4.8. This is similar to the graph in
Figure 4.6, but contains extra nodes E1, E2, E3 and E4, which precede nodes 1, 2,
3 and 4, respectively, and represent the cases where an exception would be thrown
in one of these nodes, thus preventing the operations in that node from being
performed. This representation now gives two back edges (4 → E1 and 5 → E1)
corresponding to a single combined loop. Although the source code may seem to
comprise two loops, finding only one loop is not surprising because the statement
executed immediately after a successful evaluation of (i<j) to false is the final
return statement. To avoid ambiguity, chains of unconditional gotos should be
considered as a single node if they can all throw exceptions to the same catching
blocks.

This particular example relies on exceptions being thrown to make the loop
structure. This is quite unusual and can be confusing. The solution to this is to
forbid the recognition of such loops and allow only loopsmade of normal branches.
The handling of exceptions would then be handled as usual according to theAspectJ
model, that is, using “after returning” and “after throwing”.

4.7 Implementation in abc: LOOPSAJ

Although the loop join-point model could potentially be implemented in various
aspect-oriented tools, based, for example, on Java or C#, the focus in this work

14 The API documentation for Soot is available at: http://www.sable.mcgill.ca/soot/doc/.

http://www.sable.mcgill.ca/soot/doc/

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 82

Figure 4.8: Control-flow graph with special nodes for exceptions.

has been put on a join point model integrable into AspectJ. The implementation
uses abc,15 an alternative AspectJ compiler, for two main reasons:

• extensibility was at the core of the abc design [ACH+05b, ACH+04a]; and

• abc relies heavily on the Soot framework [RH98], which provides most of
the infrastructure for performing the analyses, in particular those described
in Section 4.3.1.

This section describes an extension for abc, known as LOOPSAJ, which implements
a loop join point for AspectJ and subsequently provides the loop() pointcut. The
latter picks out loops with unique exit points (as described in Section 4.3.4) and
provides contextual information where possible. Other pointcuts for the other
forms of loops could also be provided (by lowering the degree of constraint imposed
in the shadow matcher).

4.7.1 Shadow matching

The Soot framework, and subsequently abc, uses Jimple, which is a three-address
representation of bytecode. This makes it possible to look for loops at bytecode

15http://www.aspectbench.org/

http://www.aspectbench.org/

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 83

level (as described in Section 4.2). The shadow matcher and all pre- or post-
transformations operate on this representation.

LOOPSAJ extends the abc method that finds the shadows in each method, so
that it looks for loops as well. For each method processed, the control-flow graph
and its corresponding dominator tree are built using the Soot framework toolkit.
Then combined loops are identified, as described in Section 4.3.1.

abc provides two kinds of classes representing a shadow-match: BodyShadow-
Match and StmtShadowMatch (both extend ShadowMatch). The former is utilised
when the shadow is thewholemethod body; for example, when amethod-execution
pointcut is used. The latter is used for pin-pointing a specific statement (or group
of statements) in the method; for example, when a method-call pointcut is used.

One of the requirements of abc is to insert nop operators in the shadow, at the
points where before and after 16 pieces of advice might be woven. Given this, most
of the abc infrastructure can already handle loop shadows for before and after pieces
of advice.

However, handling around pieces of advice requires a few modifications in the
abc around-weaver [Kuz04]. One of the cases where a group of statements is used
is the constructor-call shadow match. In this case, two consecutive statements
are included in the shadow-match. However, loop shadows are not necessarily
formed by consecutive statements. Indeed, at bytecode or Jimple level, it is pos-
sible that the blocks forming a given loop are interleaved with blocks that do not
belong to that loop. For this reason, StmtShadowMatch has been extended by
NonContiguousStmtGroupShadowMatch, for which the around weaver has been
modified.

Although the original abc can be compiled purely by a Java compiler, AspectJ
is required for compiling LOOPSAJ. The handling of the new type of shadows
and, more importantly, keeping the control-flow graph and the loop structures
synchronised with the method content are implemented using aspects.

Indeed, the control-flow graph and the loop structures are created during the
shadow matching. However, operations such as weaving modify the set of instruc-
tions in the methods. For example, weaving an around piece of advice is imple-
mented by placing the statements that form the shadow into a separate method17

and replacing them by an invocation of that method. Because the structure used

16It is not always possible to insert after-advice, as described in Section 4.3.
17This may be done with or without a closure [ACH+04b, ACH+05a].

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 84

by LOOPSAJ to represent the loops corresponds to the instructions that form the
loop, this structure has to be updated to take into account this operation.

Although abc is well designed for producing separate extensions, there was
originally nothing to update the graphs and set of instructions that constitute the
loops when a modification is made. Such modifications are performed in various
places in the code, and at various stages (for example, marking the shadows or
weaving). The Soot representation —on which abc is based— uses class Chain to
describe the sequence of instructions in a method. Its methods insertBefore(),
insertAfter() and remove() are utilised for all transformations. Advising these
using aspects makes it possible to implement a systematic and consistent behaviour
each time a chain modification affects a loop, wherever and whenever this may be.

4.7.2 Context exposure and transformations

Exposing the context, as described in Section 4.4, depends on the cleverness of
analysis and on the feasibility of certain transformations. For the context exposed
to make sense, it has to be constant during execution of the join point.

In order to ensure this, as long as it is possible to predict that the transformation
will not change the meaning of the loop, loop-invariant assignments are moved to
the pre-header (before the shadow matching takes place), using a scheme inspired
by that presented in [ASU85, Section 10.7].

4.7.2.1 Exposing the iteration space context

Further, in the case of a loop iterating over a range of integers, if the context
values are numerical constants, temporary variables are introduced (and initialised
in the pre-header), in order to make it possible to modify these values via calls to
proceed(...) within an around-advice. An example transformation is shown in
terms of source-code in Listing 4.7.

The part of the implementation that determines the feasibility of these trans-
formations uses the dataflow analysis facilities provided by Soot; these have also
been used to implement a code-motion method and a reaching-definition analy-
sis [Muc97, ASU85].

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 85

Listing 4.7: Code-motion example.
/* Moving the invariants outside */

int i = 0 ;
while (i < 10) {

/* ... */

int stride = 3 ;
i = i + stride ;

}

// ---

/* First step: moving the invariants outside */

int i = 0 ;
int stride = 3 ;
while (i < 10) {

/* ... */

i = i + stride ;
}

// ---

/* Second step: storing the values in temporary variables */

int stride = 3 ;
int minimum = 0 ;
int maximum = 10 ;
int i = minimum ;
while (i < maximum) {

/* ... */

i = i + stride ;
}

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 86

4.7.2.2 Exposing the originating “iterable” data context

It is not always possible to find an array to which the range of integers corresponds
(i.e. when minimum=0, stride=1, and maximum is the length of the array). For
example, if the bounds and the array are passed as arguments to the containing
method, finding the array that was the origin of these values might require much
more complex, cross-methods and points-to, analysis. The present implementation
requires at least the statement initialising maximum to the length of the array to be
within the same method as the loop.

Similarly, a Collection will only be exposed if the Iterator used for the loop
comes from a call to Collection.iterator() and Iterator.next() is not called
before the beginning of the loop.

4.7.2.3 Writing pointcuts

For loops iterating over a range of integers, the boundary values are passed via the
args construct of AspectJ, to which int values are bound (for minimum, maximum
and stride). Additionally, an extra argument will be bound to the originating
array, if one has been found.

For loops iterating over an Iterator, the first argument of args will be bound
to the corresponding instance of Iterator. Also, an extra argument will be bound
to the originating Collection, if one has been found.

In cases where the originating array or Collection do not matter, it is recom-
mended to use the double-dot wildcard notation (“..”) [KHH+01b], to make the
argument optional. For example:

• loop() && args(min, max, stride) will match only loops iterating over
an arithmetic sequence of integers for which the compiler was unable to find
an array (although one may exist);

• loop() && args(min, max, stride, ..) will match all the loops iterat-
ing over a particular arithmetic sequence of integers; and

• loop() && args(min, max, stride, array) will match all the loops it-
erating over an array, a reference towhichwill be bound to pointcut parameter
“array”.

Moreover, the way pointcuts are written to match certain loops can have an
impact on the performance, as shown in Chapter 5.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 87

4.7.3 Limitations

One of themain limitations of LOOPSAJ is the predictability on which the invariant
code-motion is based. Although code-motion is currently performed successfully
in most useful cases, it will not be performed in cases where an invariant is not
discovered by the data analysis. The implementation of such transformations
ought to be conservative, that is to say, it should not be done unless it is certain
that the resulting code will be equivalent.

Another limitation is the lack of points-to analysis in respect of Iterators.
Indeed, even though an Iterator instance may look as though it is being iterated
over regularly in the loop (i.e. there is one and only one call to next() per iteration),
nothing guarantees that no other thread is holding a reference to the same Iterator
and is calling next() concurrently. In this respect, the exposure of Iterators is
probably not sufficiently conservative. There might be a solution to this problem
if a form of whole-program analysis were to be used. (This concurrency problem
does not occur for loops iterating over a range of integers since int is a primitive
type and the int values are local variables that cannot be modified by another
thread.)

More generally, there could be further dependency analysis to provide safeguards
in case of concurrent execution of a join point. Again, whole-program analysis may
be required to be sure that a loop can be executed in parallel. This topic is addressed
further in Section 4.8.

In addition, the recognition of loops based on bytecode makes it sensitive to
loop transformations performed by the compiler. For example, an unrolled loop
would not be matched by the loop pointcut. This limitation is analogous to that of
AspectJ not being able to recognise an execution join point to a method that has
been inlined.

In whatever way a weaver capable of handling loop join points is implemented, it
should be stated clearly by the implementers howconservative their implementation
is, and, in particular, how certain it is that a specified Collection is the origin of
an Iterator.

4.8 Join point reflection and loop analyses

AspectJ provides reflection capabilities to obtain information about the join point
within pieces of advice. This is achieved via the special variable thisJoinPoint,

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 88

of type org.aspectj.lang.JoinPoint. In particular, thisJoinPoint can give
access to args, this and target, whether or not they have been bound to pointcut
parameters. For example, in Listing 4.8, the first piece of advice uses reflection to
get the join point arguments via thisJoinPoint.getArgs(), whereas the second
and third pieces of advice gain access to the arguments by using the args pointcut
and binding their value to the advice parameter (t). The fundamental difference
between these three approaches is that:

• the first piece of advice is executed before all calls to run(), whatever the
arguments may be;

• the second piece of advice is only executed before calls to run(), the argument
of which is an instance of Test1 or one of its subclasses (this test being
performed at runtime); and

• the third piece of advice is only executed before calls to run(), the argument
of which is an instance of Test2 or one of its subclasses.

In particular, join point reflection can be used to handle specific cases within a
piece of advice when its pointcut matches several join points of different types or
with different types of arguments.

Another example is the array argument of the loop join point, as implemented
in Section 4.7. The pointcut loop() && args (min, max, stride, ..) makes
thematching of an array as the fourth parameter optional. It is, however, possible to
obtain the value for the array representing the data over which the loop is iterating
using thisJoinPoint.getArgs(), as shown in Listing 4.9.

Reflection can also provide more information about a join point via the
signature of the join point. The signature contains details in the woven
code corresponding to the join point. Signature18 is an interface that
“parallels java.lang.reflect.Member” [asp]. For example, thisJoin-

Point.getSignature() returns subinterfaces implementing MethodSignature

or FieldSignature when the join points correspond to something happening,
respectively, on a method (call or execution) or on a field (set or get). In
turn, these subclasses can provide even more information about the join point (for
example, the return type, in a method signature).

The signature of the loop join point can be used as a means to provide addi-
tional runtime information about the loop it represents. This is an opportunity

18Signature is part of the org.aspectj.lang API.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 89

Listing 4.8: Example use of thisJoinPoint.
public class Test {

public static void run(Test1 t1) {
System.out.println("Test.run(Test1): "+t1) ;

}
public static void run(Test2 t2) {

System.out.println("Test.run(Test2): "+t2) ;
}
public static void main(String[] arg) {

Test1 t1 = new Test1() ; Test2 t2 = new Test2() ;
Test1 t2int1 = new Test2() ;
System.out.println(" * A *") ; run(t1) ;
System.out.println(" * B *") ; run(t2) ;
System.out.println(" * C *") ; run(t2int1) ;

}
static class Test1 {

public String toString() { return "Test1" ; }
}
static class Test2 extends Test1 {

public String toString() { return "Test2" ; }
}

}

aspect TraceTest {
pointcut calltorun(): call(* Test.run(..)) ;
before(): calltorun() {

// Matches all calls to Test.run(..)

System.out.println("Call to run with args: "
+java.util.Arrays.asList(thisJoinPoint.getArgs())) ;

}
before(Test.Test1 t): calltorun() && args(t) {

// Matches calls to Test.run(Test1) and Test.run(Test2)

System.out.println("Call to run, before(Test1): "+t) ;
}
before(Test.Test2 t): calltorun() && args(t) {

// Matches calls to Test.run(Test2)

System.out.println("Call to run, before(Test2): "+t) ;
}

}

/* Result of execution:

* A *

Call to run with args: [Test1]

Call to run, before(Test1): Test1

Test.run(Test1): Test1

* B *

Call to run with args: [Test2]

Call to run, before(Test1): Test2

Call to run, before(Test2): Test2

Test.run(Test2): Test2

* C *

Call to run with args: [Test2]

Call to run, before(Test1): Test2

Call to run, before(Test2): Test2

Test.run(Test1): Test2

*/

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 90

Listing 4.9: Example use of thisJoinPoint with LOOPSAJ.
import java.util.* ;

public aspect LoopsAJTestAspect {
before(): loop() {

System.err.println("loop(). Arguments: "
+Arrays.asList(thisJoinPoint.getArgs())) ;

}

before(int min, int max, int stride): loop()
&& args (min, max, stride) {

System.err.println("loop() "
+"with min, max, stride but no array found.") ;

}

before(int min, int max, int stride, double[] array): loop()
&& args (min, max, stride, array) {

System.err.println("loop() "
+"with min, max, stride and array of double found.") ;

}

before(int min, int max, int stride): loop()
&& args (min, max, stride, ..) {

System.err.println("loop() "
+"with min, max, stride found. Maybe there is an array.") ;

Object[] arguments = thisJoinPoint.getArgs() ;
if (arguments.length>=4) {

System.err.println(" An array has been found: "
+arguments[3]) ;

} else {
System.err.println(" No array has been found.") ;

}
}

}

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 91

to perform further analyses of the loop, which may be used within an advice to
choose a parallelisation strategy. Analyses such as those presented in [BG97] can
be performed during the shadow matching. Their outcome can be passed to the
runtime environment via the join point signature, as follows:

Analysis of exceptions. It can be useful to determine in advance whether certain
exceptions can be raised within the loop.19 For example, if it is guaranteed
that no ArrayIndexOutOfBoundsException can occurwithin a loop, dealing
with this kind of exception is unnecessary.

Analysis of scalar variables. The prototype implementation does not allow around
advice to be used where a local variable which is used after the loop may be
redefined within the loop. Further scalar analyses could make it possible to
relax this condition and let the aspect programmer decide what to do.

Analysis of arrays. The signature could also comprise information about loop car-
ried data dependencies and load-imbalance.

A hybrid approach to aspects for parallelisation could combine the strength of
the compiler analyses and the flexibility of aspects.

4.9 Aspects for parallelisation

This section presents an application of the loop() pointcut, namely parallelisation
of loops.

The example advice shown in Listing 4.10 executes in parallel (using Java threads
with cyclic loop scheduling) all the loops contained in class LoopsAJTest which
are recognised as iterating over a range of integers. As shown, the loop() pointcut
combines ideally with the “worker object creation pattern” [Lad03], which creates
new Runnables to execute join points on separate threads.

The aspect shown in Listing 4.11 is slightly more complex. It executes in
parallel, using MPI for Java,20 the loops working on an array of bytes that are in
method LoopsAJTest.test. The original array, a, is exposed to the pointcut. It is
then sliced into an array p within each MPI task. Thereafter, proceed() uses array
p instead of a, so that the loop in each MPI task only iterates over its local portion
of a.

19More generally, this could be applied to other join points, as well.
20http://www.hpjava.org/mpiJava.html

http://www.hpjava.org/mpiJava.html

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 92

Listing 4.10: Loop parallelisation using Java Threads.
void around(int min, int max, int step):

within(LoopsAJTest)
&& loop() && args (min, max, step, ..) {

int numThreads = 4 ;
Thread[] threads = new Thread[numThreads] ;
for (int i = 0 ; i<numThreads ; i++) {

final int t_min = min+i ;
final int t_max = max ;
final int t_step = numThreads*step ;
Runnable r = new Runnable () {

public void run() {
proceed(t_min, t_max, t_step) ;

}
} ;
threads[i] = new Thread(r) ;

}
for (int i = 1 ; i<numThreads ; i++) {

threads[i].start() ;
}
threads[0].run() ;
try {

for (int i = 1 ; i<numThreads ; i++) {
threads[i].join() ;

}
} catch (InterruptedException e) { }

}

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 93

Listing 4.11: Loop parallelisation using mpiJava.
import mpi.* ;

aspect MPIParallel {
int rank ;
int NP_COUNT ;

void around(String[] arg):
execution(void LoopsAJTest.main(..)) && args(arg) {

try {
MPI.Init(arg);
rank = MPI.COMM_WORLD.Rank();
NP_COUNT = MPI.COMM_WORLD.Size();

proceed(arg) ;

MPI.Finalize();
} catch (MPIException e) { /* ... */ }

}

void around(int min, int max, int stride, byte[] a):
loop() && args(min, max, stride, a, ..) &&
withincode(* LoopsAJTest.test(..)) {

try {
MPI.COMM_WORLD.Barrier();
int slice_length = a.length / NP_COUNT ;
byte[] p = new byte[slice_length] ;
if (rank == 0) {

for (int i = 0 ; i < slice_length ; i++)
p[i] = a[i] ;

for (int k = 1; k < NP_COUNT; k++)
MPI.COMM_WORLD.Ssend(a, k*slice_length,

slice_length, MPI.BYTE, k, k) ;
} else {

MPI.COMM_WORLD.Recv(p, 0, slice_length,
MPI.BYTE, 0, rank) ;

}

proceed(0, slice_length, 1, p) ;

MPI.COMM_WORLD.Barrier();
if (rank == 0) {

for (int i = 0; i < slice_length; i++)
a[i] = p[i];

for (int k = 1; k < NP_COUNT; k++)
MPI.COMM_WORLD.Recv(a, k*slice_length,

slice_length, MPI.BYTE, k, k);
} else {

MPI.COMM_WORLD.Ssend(p, 0,
slice_length, MPI.BYTE, 0, rank);

}
MPI.COMM_WORLD.Barrier();

} catch (MPIException e) { /* ... */ }
}

}

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 94

When using these kinds of aspects, the programmer needs to make sure that the
loops that are going to be executed in parallel can actually be parallelised. This can
be helped by using reflection, where this provides results of more complex analyses
(see Section 4.8).

Other examples of aspects for parallelisation are presented in Chapter 5.

4.10 Related topics

This section explores two related potential fine-grained join points (i.e. join points
that recognise complex behaviour within a method and not only at the interface of
the object), namely a “loop-body” join point (Section 4.10.1), and an “if-then-else”
join point (Section 4.10.2).

4.10.1 “Loop-body” join point

The model of loop join point presented thus far takes an outside view of the loop;
the points before and after the loop are not within the loop itself. As a consequence,
however many iterations there may be for a given loop, before and after-advice will
be executed only once. For some applications, for example for inserting a piece of
advice before each iteration, it might be desirable to advise the loop body. However,
the semantics would be difficult to define.

Even in the source-code, there is ambiguity about where to weave before and
after advice in such a case. For example, is the termination condition in the loop-
body or not? (see Listing 4.12). This question is even more pertinent for complex
conditions that may include calls to methods.

Again, a basic-block control-flow approach may solve the problem. It may be
possible to define that “before” the loop-body is the point at the beginning of the
header, included in the loop, and that “after” the loop-body is a point inserted on the
back edge of the natural loop. If there were several back edges in the corresponding
combined loop, an equivalent of the “pre-header” could be inserted between the
back edges and the header, in order to keep a single weaving point. In the case
of a while-loop or a for-loop, “before” the loop-body would also be before the
evaluation of the condition.

Without any enhancement, such a model would not comprise any contextual
information (or “arguments” to the loop-body).

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 95

Listing 4.12: Loop-body join point: where are “before” and “after”?
int i = 0;
while (i<2) {

/* Is ‘‘before’’ the loop-body right here, or

should it be before (i<2) is evaluated? */

System.out.println("i: "+i) ;
i++ ;
/* Is ‘‘after’’ the loop-body here? Would ‘‘i++’’

be included in the loop-body of the equivalent

for-loop? */

}

i = 0 ;
do {

/* Before the loop-body */

System.out.println("i: "+i) ;
i++ ;
/* Is ‘‘after’’ here, or should it be after (i<2)

has been evaluated? */

} while (i<2) ;

An application of this model could be to assert loop invariants by using aspects,
provided that the elements upon which the conditions depend can be made visible
to the aspects.

4.10.2 “If-then-else” join point

Why stop at loops? Similar techniques could be applied so as to provide aspect-
oriented languages such as AspectJ with a model for an “if-then-else” join point.

At source-code level, there is again the question of whether the evaluation of
the condition should or should not be included in the “if-then-else” join point.

A basic-block control-flow approach may help to define a model. A possible
way to find the shadows of “if-then-else” constructs might be in the combined use
of dominators and postdominators. “[We] say that node p postdominates node i [...]
if every possible execution path from i to [the exit] includes p” [Muc97]. Given a node
a that branches conditionally to other nodes (unconditional branching presents no
interest), the smallest subgraph G of the control-flow graph that contains another
node b such that a dominates all the nodes in G and b postdominates a, would
represent an area of conditional execution, starting from a and joining back at b.
Since a would dominate all the nodes in G, it would be the unique entry node to
G. Since b would postdominate a, b would be the unique exit node from G. Just

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 96

before the conditional jump in a would be the before weaving point, and just before
b (for edges coming from inside G) would be the after weaving point.

Again, it is unclear what kind of contextual information could be included in
such a model. Without it, such an “if-then-else” join point would represent areas
of code that will only be partially executed (for a given (dynamic) join point).

However, going a step further, by making it possible to advise goto statements
directly in the bytecode, may break modularity and consistency, even within a
method, which would counteract the benefits of using aspects.

Apart from the usual debugging and tracing applications of such join points,
another successful approach for defining fine-grained join points (including condi-
tional if blocks) has been applied to code-coverage analysis [RS05].

4.11 Summary

This chapter demonstrates that it is possible to provide AspectJ (and, theoretically,
other aspect-oriented systems) with a join point for loops, which can be applied, in
particular, for loop parallelisation.

The main remaining difficulties are: (a) the cleverness of the context analy-
sis, and (b) the mechanisms for selecting loops. The context analysis is mostly
implementation-dependant. Reflective mechanisms added to the join points can be
a powerful means of conveying the results of deeper analyses to the aspect, without
extending the language further than the new pointcuts. But the loop selection
problem is more fundamental, especially because loops cannot be named or tagged.
Practical uses of this join point, and how to write pointcuts for selecting only
certain loops are presented in Chapter 5.

More generally, this chapter shows that join points need not be limited to
“simple” operations, but can also address more complex behaviours.

The most fundamental remaining problem lies in the mechanisms for selecting
loops, especially because loops cannot be named or tagged. Such fine-grained prob-
lems would benefit from other pointcut mechanisms, in particular more expressive
data-flow and control-flow pointcut description mechanisms. In addition, loops
based on recursion constitute a different problem that would also benefit from
more advanced pointcut mechanisms, but would not necessarily require join points
other than call and execution.

CHAPTER 4. A JOIN POINT FOR LOOPS IN ASPECTJ 97

The other limitations of this model are mainly due to relying on the bytecode
for recognising the loops. This design decision has been made for the same reasons
that it has been made in AspectJ, namely, making something applicable to a wider
code base (especially that for which the source is not available) and less sensitive to
changes in programming styles. These limitations of LoopsAJ can be compared to
certain limitations of AspectJ, in particular, the inability to weave after an exception
handler21 and the inability to match a call to a private method of an inner class from
another inner class in the same class22. In the process of developing an application,
the concern of keeping track of a loop structure crosscuts the compilation stage
and the weaving stage. A potential solution to such problems might consist of
passing more information from source-code to bytecode, perhaps by using specific
attributes in the class-file format, or mechanisms such as Soot tags in abc, at the
expense of the possibility to use aspects in arbitrary bytecodes.

21See https://bugs.eclipse.org/bugs/show_bug.cgi?id=33636.
22See https://bugs.eclipse.org/bugs/show_bug.cgi?id=124845.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=33636
https://bugs.eclipse.org/bugs/show_bug.cgi?id=124845

Chapter 5

Applications and performance
evaluation

This chapter investigates applications of the techniques presented in Chapters 3
and 4. It provides examples of the flexibility of aspects for parallelisation and
evaluates the performance costs incurred by the techniques employed for enabling
the applications to be parallelised using aspects.

The example aspects for parallelisation presented so far utilise Java-threads or
MPI. However, Section 5.1 demonstrates the flexibility of aspects by showing
example aspects for other parallelisation schemes, which can also be re-used in
many applications and woven on demand, without tangling the original code. The
remainder of the chapter studies the performance obtained using the techniques
presented in Chapters 3 and 4.

Although some of the theory presented in Chapters 3 and 4 is not limited to a
Java environment, all the examples used are specifically based on AspectJ and Java
class-files.1

Two main factors have been found to have a substantial influence on the timing
results obtained:

1. Because the examples used are Java-based, the performance costs depend
on which Java Virtual Machine (JVM) and which processor architecture are
used. Although the core principle of Java is “write once, run everywhere”, the
oblivious behaviour of the virtual machine (with respect to the application)

1Section 1.4 gives background information about Java with respect to high-performance com-
puting.

98

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 99

incurs its own side-effects, such as the unpredictable effects of certain opti-
misations. As shown throughout the test-cases presented in this chapter (in
Sections 5.5, 5.6 and 5.7), the choice of JVM (and platform) can completely
change the results: in some Java environments2, refactoring an application
to enable the use of parallelising aspects introduces almost no overhead; in
others, the simple act of doing these refactorings can quadruple the execution
time. The choice of Java environment can be considered as an external factor,
on which the application programmer has limited influence.

2. The ways in which the numerical code and the aspects are written can have
an impact on the execution speed of the applications. This factor is evidently
influenced by the application programmer. Two strategies can be adopted for
enabling an application to be parallelised using aspects:

(a) it can be refactored so as to expose the iteration space of the loops to
execute in parallel at the interface of the classes —this is the technique
presented in Chapter 3, which makes it possible to use AspectJ as it is—
or

(b) the loops can be advised directly using an aspect compiler that imple-
ments the join pointmodel for loops presented inChapter 4—in general,
there are several different ways of writing pointcuts using this approach
(this is reflected in particular by the results presented in Section 5.5).

After describing the general requirements for writing aspects for parallelisation
using refactored code for AspectJ (in Section 5.2) and using LOOPSAJ—the pro-
totype implementation of the join point for loops— (in Section 5.3), this chapter
presents test-cases that aim to compare these two techniques, with each other, and
with the standard Java implementation.

Three test-cases are presented in Sections 5.5, 5.6 and 5.7; these sections each
describe one application and present performance results for it. The performance
results show both the cost of using aspects in the sequential code, and the execution
time in multi-threaded parallel configurations. (Performance results for aspects
using MPI have been omitted because mpiJava was not fully functional with the
combination of JVM and machines used for the experiments.) In Sections 5.6
and 5.7, performance results obtained using the refactoring method (as described

2 “Java environment” is used to encompass all the layers from processor-type to the virtual
machine of a particular vendor, through the operating system.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 100

in Chapter 3 and Section 5.2) are compared with results obtained using LOOPSAJ
aspects (as described in Chapter 4 and Section 5.3).

5.1 Aspects for flexibility in implementing paralleli-

sation strategies

Chapters 3 and 4 have shown that it is possible to use aspects for choosing a
parallelisation scheme. The examples showed either a multi-threaded aspect or an
MPI aspect, which would parallelise the application using multiple Java threads or
MPI, respectively. This section aims to demonstrate the flexibility introduced by
the use of aspects by showing other parallelisation strategies.

The examples in this section provide several aspects that can parallelise two
similar applications differently. These aspects are made abstract, in a manner
similar to abstract classes in Java. In abstract aspects, the advice is fixed but
the pointcut descriptor is abstract and has to be concretised in non-abstract sub-
aspects. In the following examples, the abstract pointcut (loopsToParallelise) is
expected to select the loops to parallelise and takes three arguments (the minimum,
the maximum and the stride of the loop). These abstract aspects are therefore
independant of the choice between the refactoring techniques (as seen inChapter 3)
or LOOPSAJ (as seen in Chapter 4). Four aspects have been written, each one
implementing a different parallelisation strategy, as follows:

• aspect ThreadBlockScheduling, shown in Listing 5.1, parallelises the se-
lected loop using block scheduling, each block being executed in a Thread
that is managed in the advice;

• aspect ThreadPoolBlockScheduling, shown in Listing 5.2, parallelises
the selected loop using block scheduling, each block being executed via a
Runnable object run in a thread-pool;

• aspect ThreadPoolCyclicScheduling, shown in Listing 5.3, parallelises the
selected loop using cyclic scheduling, each part being executed via a Runnable
object run in a thread-pool;

• aspect ForkJoinBlockScheduling, shown in Listing 5.4, parallelises the
selected loop using block scheduling in a Fork-Join parallel task, possibly

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 101

with more blocks than threads in order to take advantage of the queue of
tasks in the Fork-Join framework [Lea00].

Other parallelisation aspects could be implemented, for example using a dis-
tributed Fork/Join framework [LMGF05]. Each of these four aspects can be
plugged in or removed at will, since their inclusion in the application is optional.
The flexibility introduced makes it possible to choose and adapt a parallelisation
strategy depending on the application, without introducing any code-tangling in
the computational units.

The examples chosen to illustrate the use of these parallelisation aspects consist
of a dense matrix multiplication (shown in Listing 5.5) and a triangular matrix
multiplication (shown in Listing 5.6), although these aspects could be applied to
a large number of applications that contain parallelisable loops. All of the four
abstract aspects presented above could be used, but only two concrete aspects are
presented, using the thread block scheduling (shown in Listing 5.7) and the fork-
join block scheduling (shown in Listing 5.8), respectively. These concrete aspects
use LOOPSAJ.

In the triangular matrix multiplication, a block scheduling using as many blocks
as threads is not the best solution, since the blocks do not require the same amount
of computation. Plugging in the aspect for cyclic scheduling, or the aspect for
using the Fork-Join framework, would be a better choice in this case.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 102

Listing 5.1: Aspect for parallelisation using block scheduling.
public abstract aspect ThreadBlockScheduling {

abstract pointcut loopsToParallelise(int min, int max, int stride) ;

public final int THREADS_COUNT ;
public ThreadBlockScheduling() {

THREADS_COUNT=Integer.parseInt(System.getProperty("threads","1"));
}

void around(int min, int max, final int stride):
loopsToParallelise(min, max, stride) {

Thread[] threads = new Thread[THREADS_COUNT] ;

int chunk_length = ((max-min)/(THREADS_COUNT*stride))*stride ;
if (((max-min)%THREADS_COUNT)!=0)

chunk_length += stride ;

for (int k = 0 ; k < THREADS_COUNT ; k++) {
final int slice_min = min + k*chunk_length;
int temp_max = min + (k+1)*chunk_length;
if (temp_max>max) temp_max = max ;
final int slice_max = temp_max;
thread[k] = new Thread(new Runnable() {

public void run() {
proceed(slice_min, slice_max, stride) ;

}
}) ;

}

try {
for (int k = 1 ; k < THREADS_COUNT ; k++) {

thread[k].start() ;
}
thread[0].run() ;
for (int k = 1 ; k < THREADS_COUNT ; k++) {

thread[k].join() ;
}

} catch (InterruptedException ie) {/* ... */}
}

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 103

Listing 5.2: Aspect for parallelisation in a thread-pool using block scheduling.
public abstract aspect ThreadPoolBlockScheduling {

abstract pointcut loopsToParallelise(int min, int max, int stride) ;

public final int THREADS_COUNT ;
private final ThreadPool threadPool ;
public ThreadPoolBlockScheduling() {

THREADS_COUNT=Integer.parseInt(System.getProperty("threads","1"));
threadPool = new ThreadPool(THREADS_COUNT) ;

}

void around(int min, int max, final int stride):
loopsToParallelise(min, max, stride) {

Runnable[] runnables = new Runnable[THREADS_COUNT] ;

int chunk_length = ((max-min)/(THREADS_COUNT*stride))*stride ;
if (((max-min)%THREADS_COUNT)!=0)

chunk_length += stride ;

for (int k = 0 ; k < THREADS_COUNT ; k++) {
final int slice_min = min + k*chunk_length;
int temp_max = min + (k+1)*chunk_length;
if (temp_max>max) temp_max = max ;
final int slice_max = temp_max;
runnables[k] = new Runnable() {

public void run() {
proceed(slice_min, slice_max, stride) ;

}
} ;

}

threadPool.run(runnables) ;
}

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 104

Listing 5.3: Aspect for parallelisation in a thread-pool using cyclic scheduling.
public abstract aspect ThreadPoolCyclicScheduling {

abstract pointcut loopsToParallelise(int min, int max, int stride) ;

public final int THREADS_COUNT ;
private final ThreadPool threadPool ;
public ThreadPoolCyclicScheduling() {

THREADS_COUNT=Integer.parseInt(System.getProperty("threads","1"));
threadPool = new ThreadPool(THREADS_COUNT) ;

}

void around(int min, final int max, final int stride):
loopsToParallelise(min, max, stride) {

Runnable[] runnables = new Runnable[THREADS_COUNT] ;

for (int k = 0 ; k < THREADS_COUNT ; k++) {
final int local_min = min + k*stride;
runnables[k] = new Runnable() {

public void run() {
proceed(local_min, max, stride*THREADS_COUNT) ;

}
} ;

}

threadPool.run(runnables) ;
}

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 105

Listing 5.4: Aspect for parallelisation using the Fork-Join framework.
import EDU.oswego.cs.dl.util.concurrent.*;

public abstract aspect ForkJoinBlockScheduling {

abstract pointcut loopsToParallelise(int min, int max, int stride) ;

public final int THREADS_COUNT ;
public final int NSLICES ;
private final FJTaskRunnerGroup taskrunner ;
public ForkJoinBlockScheduling() {

THREADS_COUNT=Integer.parseInt(System.getProperty("threads","1"));
NSLICES = Integer.parseInt(System.getProperty("slices","1")) ;
taskrunner = new FJTaskRunnerGroup(THREADS_COUNT) ;

}

void around(int min, int max, final int stride):
loopsToParallelise(min, max, stride) {

FJTask[] tasks = new FJTask[NSLICES] ;

int chunk_length = ((max-min)/(NSLICES*stride))*stride ;
if (((max-min)%NSLICES)!=0)

chunk_length += stride ;

for (int k = 0 ; k < NSLICES ; k++) {
final int slice_min = min + k*chunk_length;
int temp_max = min + (k+1)*chunk_length;
if (temp_max>max) temp_max = max ;
final int slice_max = temp_max;
tasks[k] = new FJTask() {

public void run() {
proceed(slice_min, slice_max, stride) ;

}
} ;

}

FJTask parTasks = FJTask.par(tasks) ;

try {
taskrunner.invoke(parTasks) ;

} catch (InterruptedException ie) {/* ... */}
}

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 106

Listing 5.5: Multiplication of two dense matrices.
public class DenseMatrixMultiplication {

public void run() {
int N = /* ... */

double[][] a = /* an N*N matrix */

double[][] b = /* an N*N matrix */

double[][] c = /* an empty N*N matrix */

for (int i = 0; i<c.length; i++) {
double row[] = c[i] ;
for (int j = 0 ; j<=row.length ; j++) {

double sum = 0 ;
for (int k = 0 ; k<N ; k++) {

sum += a[i][k] * b[k][j] ;
}
c[i][j] = sum ;

}
}

}

/* ... */

}

Listing 5.6: Multiplication of two triangular matrices.
public class TriangularMatrixMultiplication {

public void run() {
int N = /* ... */

double[][] a = /* an N*N lower triangular matrix */

double[][] b = /* an N*N lower triangular matrix */

double[][] c = /* an empty N*N lower triangular matrix */

for (int i = 0; i<c.length; i++) {
for (int j = 0 ; j<=i ; j++) {

double sum = 0 ;
for (int k = 0 ; k<N ; k++) {

sum += a[i][k] * b[k][j] ;
}
c[i][j] = sum ;

}
}

}

/* ... */

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 107

Listing 5.7: Aspect for multiplying matrices in parallel using block scheduling.
public aspect MatrixThreadBlockScheduling extends ThreadBlockScheduling{

pointcut withinrun():
withincode(void TriangularMatrixMultiplication.run(..)) ;

pointcut doublearrayloop(): loop() && args(*,*,*,double[][]) ;

pointcut loopsToParallelise(int min, int max, int stride):
withinrun() &&
doublearrayloop() &&
args(min, max, stride, *) ;

}

Listing 5.8: Aspect for multiplying matrices in parallel using the Fork-Join frame-
work.
public aspect MatrixFJBlockScheduling extends ForkJoinBlockScheduling {

pointcut withinrun():
withincode(void TriangularMatrixMultiplication.run(..)) ;

pointcut doublearrayloop(): loop() && args(*,*,*,double[][]) ;

pointcut loopsToParallelise(int min, int max, int stride):
withinrun() &&
doublearrayloop() &&
args(min, max, stride, *) ;

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 108

5.2 Aspects for refactored code, using AspectJ

The Red-Black test-case has been used to measure and compare the performance of
the object-oriented loop models, as presented in Section 3.2, with the performance
of the equivalent loops written in the traditional way. The models are rectangle-
based, which matches the iteration space of the Red-Black algorithm.

The Crypt application has been used to measure the impact of refactorings, as
shown in Section 3.1.

Both of these kinds of refactoring make it possible to use AspectJ, as it stands,
for writing aspects for parallelisation. As shown in Chapter 3, the key technique
for writing aspects for parallelism using AspectJ consists of exposing the iteration
space as a parameter to a method which solely contains the loop that is to be
parallelised.

5.3 Aspects for the join point for loops, using

LOOPSAJ

Asdescribed in Section 4.5, writing pointcuts to select specific loops can be difficult.
The way pointcuts are written can also influence the performance obtained, in
particular when cflow-related constructs are used.

Listing 5.9: Writing pointcuts for parallelisation using the join point for loops.
public void process(double[] array, int N) {

outer:
for (int i = 0 ; i < array.length ; i++) {

inner:
for (int j = 1 ; j < N ; j ++) {

/* Do something with the array */

}
}

}

For example, consider the loops shown in Listing 5.9. The pointcuts to select
the outer loop in method process can be of two forms:

1. data-based:
pointcut loopOnArrayOfDouble(double[] a):

loop() && args(*,*,*,a) ; or

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 109

2. cflow-based:
pointcut outerLoop():

loop() && !cflowbelow(loop()) ;

The first pointcut, loopOnArrayOfDouble(double[] a), makes the selection
according to the data type handled by the loop. Although the data type check is
performed at run-time (via instanceof), this could be optimised and determined at
compile type. Indeed, double[] has no subtype, and its only supertype is Object,
thus, declaring the variable to be of type double[] at compile-time guarantees the
same type at runtime. No additional runtime checks are required to check whether
the pointcut matches the inner loop.

The second pointcut, outerloop() makes the selection according to the state
of the control flow. “loop() && !cflowbelow(loop())” selects all the loops
that are not below the control flow of any loop, which is exactly what is required to
match outer loops. However, the implementation of cflow and cflowbelow relies
on a counter, or a stack, which is incremented and decremented on entry and exit,
respectively, of the join point described within cflow(), that is, in this case, all the
loops (with a unique exit). A test to check the value of this counter is performed
before entering each loop. In the example shown in Listing 5.9, an extra test of the
cflow counter is made on every iteration of the outer loop in order to check if the
pointcut also matches the inner loop.

As the results presented in Sections 5.5 and 5.7.2 demonstrate, choosing either
one of these two ways of writing the pointcut descriptors can have an impact on the
performance obtained, depending on the optimisation strategies of the JVM and
on the test-case. Extensive work on optimising cflow-related implementations has
been done for abc [ACH+04b, ACH+05a] and has been integrated subsequently
into ajc3.

Independently of the choice between these two ways of writing pointcuts,
Sections 5.6.2 and 5.7.2 present applications and performance results for three
variants of the test-cases:

1. without any aspect —this is the reference;

2. with an aspect that advises the loop to be parallelised but uses only proceed()
(see Listing 5.10) —this shows the overhead of only weaving;

3ajc is the original AspectJ compiler.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 110

3. with an aspect that advises the loop to be parallelised so that it is executed in
threads (see Listing 5.11) —this shows the full overhead of weaving, creating
new instances of Runnable and executing them in multiple threads.4

Listing 5.10: Aspect that simply proceeds with the original join point execution.
public aspect ProceedOnly {

/*

...

Definition of pointcut loopstoparallelise()

...

*/

void around(final int min, final int max, final int stride):
loopstoparallelise() && args(min, max, stride, ..) {

proceed(min, max, stride) ;
}

}

4Because the refactored version of the Red-Black application has been tested with a thread pool,
the LOOPSAJ aspect for parallelising this application also uses a thread pool.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 111

Listing 5.11: Aspect that splits the loop recognised by the pointcut into blocks and
executes it in several threads.
public aspect ExecuteLoopInThreadPool {

/*

...

Definition of pointcut loopstoparallelise()

Initialisation of THREADS_COUNT

...

*/

void around(final int min, final int max, final int stride):
loopstoparallelise() && args(min, max, stride, ..) {

Thread threads[] = new Thread[THREADS_COUNT] ;

int chunk_length = ((max-min)/(THREADS_COUNT*stride))*stride ;
if (((max-min)%THREADS_COUNT)!=0)

chunk_length += stride ;

for (int k = 0 ; k < THREADS_COUNT ; k++) {
final int slice_min = min + k*chunk_length;
int temp_max = min + (k+1)*chunk_length;
if (temp_max>max) temp_max = max ;
final int slice_max = temp_max;
threads[k] = new Thread(new Runnable() {

public void run() {
proceed(slice_min, slice_max, stride, array) ;

}
}) ;

}

try {
for (int k = 1 ; k < THREADS_COUNT ; k++) {

threads[k].start() ;
}
threads[0].run() ;
for (int k = 1 ; k < THREADS_COUNT ; k++) {

threads[k].join() ;
}
} catch (InterruptedException e) {
}

}
}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 112

5.4 Experimental environment

5.4.1 Machines

Four machines have been used for running the experiments presented in the re-
mainder of this chapter. Their configurations are as follows:

• a PC with a single Athlon XP2500+ processor (32-bit x86 compatible) at
1.83 GHz, with 512 KB of cache, with 1 GB of RAM running Linux (kernel
2.6.9);

• a PC with two Pentium-III (Coppermine) processors at 870 MHz, with
256 KB of cache each, sharing 512 MB of RAM and running Linux (kernel
2.4.18);

• a Sun server with 4 UltraSparc processors at 450 Mhz, with 8 MB of cache
each, sharing 1 GB of RAM and running SunOS (Solaris) 5.8; and

• an SGI Origin 3400 with 16 MIPS processors at 400 Mhz, with 8 MB of L2
cache each, sharing 4 GB of RAM and running Irix 6.5.

5.4.2 Java virtual machines

Three brands of JVM have been used for running the experiments presented in the
remainder of this chapter, namely Sun, IBM and SGI.

Sun JVMs are available for both the x86 (Pentium-III and Athlon) and Sparc
architectures. Versions 1.4.2 and 1.5.0 have been used. All Sun JVMs come with
client and server modes.5 The Sun JVMs for the Sparc machine also have a 64-bit
mode (which is a variant of the server mode).

The IBM JVM is only available for the x86 architectures of the above machines.6

Version 1.4.2 has been used (this is the latest version available at the time ofwriting).
The SGI JVM is only available for the SGI machine. It is based on the Sun

HotSpot VM, and is available only in client mode [SSTP02].

5The Java Hotspot Virtual Machine [Hot] provides two just-in-time compilers: the client com-
piler, which is faster, and the server compiler, which performs stronger optimisations. The server
version is tuned for server applications, where it can beworth spendingmore time on the compilation
if the resulting code is better optimised.

6It is in fact available for other types of machines that were not at our disposal.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 113

5.4.3 Compilers

The compilers that have been used for the experiments presented in the remainder
of this chapter are:

• ajc: the original AspectJ compiler;7

• abc: the AspectBench Compiler,8 which is an alternative compiler for the
AspectJ language; and

• LOOPSAJ: an extension to abc which contains a prototype implementation
of the loop join point presented in Chapter 4.

5.5 Test-case: data-based vs. cflow-based selection in

LOOPSAJ

In order to show the impact on performance of choosing either the data-based or
the cflow-based means of writing pointcuts using LOOPSAJ, a very simple example
has been utilised. The source code for this example is shown in Listing 5.12.
Method run(), the execution time of which is measured, contains a nest of three
loops, which are referred to in the following as the i-loop, the j-loop and the
k-loop, according to the name of the index used.

Three sets of tests have been performed:

1. without any aspect (compiled with abc and the LOOPSAJ extension);

2. with an aspect advising only the i-loop with just proceed(), using a pointcut
based on the data type: this is the aspect TestArrayProceed, shown in
Listing 5.13; and

3. with an aspect advising only the i-loop with just proceed(), using a pointcut
based on the control-flow: this is the aspect TestCFlowProceed, shown in
Listing 5.14.

Although these three variants produce the same result and could be considered
as equivalent by the programmer, the potential runtime overheads differ.

7http://www.eclipse.org/aspectj/
8http://www.aspectbench.org/

http://www.eclipse.org/aspectj/
http://www.aspectbench.org/

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 114

Listing 5.12: Simple example with three nested loops.
public class Test {

public int repeat ;
public Test(int sizeDoubleArray, int sizeIntArray, int repeat) {

/* ... */

}

private final double[] doubleArray ;
private final int[] intArray ;
public void initialiseArrays() {

/* ... */

}

public void run() {
int R = repeat ;
double[] array1 = doubleArray ;
int[] array2 = intArray ;

for(int i = 0; i<array1.length; i++)
for (int j = 0 ; j<R ; j++)

for (int k = 0 ; k<array2.length ; k++)
array1[i] *= array2[k] - 10 ;

}

public static void main(String[] args) {
/* ... */

Test t = new Test(1000,100,repeat) ;
t.initialiseArrays() ;

long starttime = System.currentTimeMillis() ;

t.run() ;

long stoptime = System.currentTimeMillis() ;
long duration = stoptime - starttime ;
/* ... */

}
}

Listing 5.13: Array-based aspect for the simple example.
public aspect TestArrayProceed {

pointcut withinrun(): withincode(void Test.run(..)) ;
pointcut doublearrayloop(): loop() && args(*,*,*,double[]) ;

void around(): doublearrayloop() && withinrun() {
proceed() ;

}
}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 115

Listing 5.14: cflow-based aspect for the simple example.
public aspect TestCFlowProceed {

pointcut withinrun(): withincode(void Test.run(..)) ;
pointcut outerloop(): loop() && !cflowbelow(loop()) ;

void around(): outerloop() && withinrun() {
proceed() ;

}
}

The advice in TestArrayProceedmatches the two array-based loops, that is to
say, the i- and k-loops, at compile time. The runtime test to check whether-or-not
the pointcut matches each of these loops is based on an instanceof test on the
array given in the loop, to check the runtime type of array1 and array2, just before
the i-loop and the k-loop, respectively. This implies (R + 1) × array1.length

instanceof checks per execution of run(). Theoretically, the JVM could optimise
these tests, since the type is known, even at compile-time.

The advice in TestCFlowProceedmatches the three loops at compile time, and
the cflowbelow construct entails the introduction in the woven code of a counter
which is incremented on every loop entry, and decremented on every loop exit.
When the value of this counter is 0, the condition “!cflowbelow(loop())” is
fullfilled and the advice is executed. This implies that this counter is incremented
(R+1)×array1.length+1 times, and decremented as many times, per execution
of run().

In both cases, the loops that are matched at compile-time are extracted from
the original method and placed into another method in the same class (see [Kuz04,
ACH+04b, ACH+05a]).

Intuitively, it is expected that the version without any aspect will perform best,
and that the data-based version will perform better than the cflow-based version.
Tests on the Sparc machine, using the Sun JVMs, and on the Athlon machine, using
the IBM JVM 1.4.2, produce the expected results, as shown in Figures 5.1 and 5.2.

However, the results obtained on the Athlon machine using the Sun JVMs are
more surprising, as shown in Figures 5.3 and 5.4. For this particular application,
the use of a counter (in the cflow-based version) appears to be better optimised
than the use of instanceof (in the data-based version) using the client mode of
the JVM. This might be surprising, but this is, after all, a matter of optimisation
strategy (optimising the use of a counter or optimising the type-checking). What

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 116

5000 10000 20000 40000
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Sun UltraSparc 450Mhz - SUN JVM 1.5.0 (client mode)

No aspect TestArrayProceed TestCFlowProceed

Repetitions

T
im

e
 (

m
s)

Figure 5.1: Performance comparison between data-based and cflow-based point-
cuts on Sun JVM 1.5.0 (client)/Sparc.

5000 10000 20000 40000
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

25000

27500

30000

32500

Athlon XP2500+ - IBM JVM 1.4.2

No aspect TestArrayProceed TestCFlowProceed

Repetitions

T
im

e
 (

m
s)

Figure 5.2: Performance comparison between data-based and cflow-based point-
cuts on IBM JVM 1.4.2/Athlon.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 117

is much more surprising, in both client and server modes, is that the version with-
out an aspect —and therefore without extra code and indirections— gives worse
performance results than one of the versions with an aspect —with indirections
and additional runtime checks.9

In addition, the IBM JVM is always faster than the Sun JVM (up to about 3
times faster) in these tests.

5000 10000 20000 40000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Athlon XP2500+ - SUN JVM 1.5.0 (server mode)

No aspect TestArrayProceed TestCFlowProceed

Repetitions

T
im

e
 (

m
s)

Figure 5.3: Performance comparison between data-based and cflow-based point-
cuts on Sun JVM 1.5.0 (server)/Athlon.

9Further informal experiments have shown that the same Sun JVM does not present this surpris-
ing result on a Pentium IV. This is probably due to a bug in the Sun just-in-time compiler for Athlon.
Although the AMD Athlon and the Intel Pentium are very similar, the just-in-time compiler of the
Sun JVM is capable of detecting on which of these two categories of processors it is running, and
subsequently triggers different optimisations.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 118

5000 10000 20000 40000
0

5000

10000

15000

20000

25000

30000

35000

40000

Athlon XP2500+ - SUN JVM 1.5.0 (client mode)

No aspect TestArrayProceed TestCFlowProceed

Repetitions

T
im

e
 (

m
s)

Figure 5.4: Performance comparison between data-based and cflow-based point-
cuts on Sun JVM 1.5.0 (client)/Athlon.

5.6 Test-case: successive over-relaxation

This test-case is an implementation of the “Red-Black algorithm”, which is an algo-
rithm for Successive Over-Relaxation10 (for solving partial differential equations).
The numerical purpose of this test-case is to solve Laplace’s equation ∇2u = 0 on
a square surface, with the following boundary conditions:

∀y ∈ [0, π], u(0, y) = 0

∀x ∈ [0, π], u(x, 0) = 0

∀x ∈ [0, π], u(x, π) = sin(x)

∀y ∈ [0, π], u(π, y) = 0

The problem is discretised so that the surface is mapped onto a (N + 2) × (N +

2) square array. The boundaries of the square (u0,j , uN+1,j , ui,0 and ui,N+1) are
initialised at the beginning and represent the constraints of the physical model.
The algorithm consists of updating each value ui,j∈[1..N]2 of this array according to

10Details about themathematical theory of this algorithm can be found in [PTVF93, pp. 866–869].

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 119

the following formula:

u
(n+1)
i,j = (1− ω)u

(n)
i,j +

1

4

(
u

(n)
i−1,j + u

(n)
i+1,j + u

(n)
i,j−1 + u

(n)
i,j+1

)

where u
(n)
i,j is the value at the ij-the position after the n-th iteration over the whole

array, and ω is a constant. With this formula, the computation of any ui,j depends
only on its North, South, East and West neighbours, as shown in Figure 5.5.
Thus, the array can be decomposed into two parts, red and black, so that updating

u
i,ju

i+1,j

u
i,j−1

u
i−1,j

u
i,j+1

N

S

EW

Figure 5.5: North, South, East and West in the Red-Black algorithm.

elements of one part depends only on the elements of the other part, as shown
in Figure 5.6. Each red or black part of the array is embarrassingly parallelisable

Figure 5.6: Red/Black decomposition.

(that is to say, each red (black, respectively) value can be computed independently
from all the other red (black, respectively) values). The Red-Black algorithm is
summarised by the following pseudo-code:

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 120

while (degree of precision not achieved) {
compute all the red values ;
compute all the black values ;

}.

Intuitively it is expected that themost efficient implementationof this algorithm
in Java would be that shown in Listing 5.15. This implementation (methodBasicA)
iterates consecutively through all the lines indexed by i and uses a stride of 2 in
the j-loop to jump from one red (or black) spot to another. To ensure that the
tests run long enough for the time measurements to be significant, the number of
iterations is fixed and not based on any degree of precision.

Listing 5.15: Red/Black test-case: methodBasicA.
public void methodBasicA (double u[][]) {

int iterations = 0;
while (iterations < maxIterations) {

// Iterates through the red points.

for (int i = 1; i <= N; i++)
for (int j = (2 - (i % 2)); j <= N; j += 2)

u[i][j] = /* ... */

// Iterates through the black points.

for (int i = 1; i <= N; i++)
for (int j = (1 + (i % 2)); j <= N; j += 2)

u[i][j] = /* ... */

iterations++;
}

}

5.6.1 AspectJ approach: object-oriented loops

The object-oriented loopmodel presented in Section 3.2 cannot handle stride values
different from 1. Thus, methodBasicA has been modified to form methodBasicB,
in which the j-loop uses a stride value of 1, as shown in Listing 5.16.

The test-case program also contains methods methodRectangleLoopA, metho-
dRectangleLoopB and methodRectangleLoopC, which implement the two (red
and black) sets of double-nested loops using models RectangleLoopA, Rectan-
gleLoopB and RectangleLoopC, respectively, from Section 3.2. These implemen-
tations are semantically equivalent to methodBasicB. The results obtained with

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 121

Listing 5.16: Red/Black test-case: methodBasicB.
public void methodBasicB (double u[][]) {

int iterations = 0;
while (iterations < maxIterations) {

// Iterates through the red points.

for (int i = 1; i <= N; i++)
for (int j = 1; j <= (N / 2); j++) {

int jtemp = 2 * j - (i % 2);
u[i][jtemp] = /* ... */

}

// Iterates through the black points.

for (int i = 1; i <= N; i++)
for (int j = 1; j <= (N / 2); j++) {

int jtemp = 2 * j - 1 + (i % 2);
u[i][jtemp] = /* ... */

}

iterations++;
}

}

methodBasicA can be used to estimate the overhead due to re-factoring method-
BasicA into methodBasicB and its subsequent equivalents.

Timers have been placed around each of these methods. The results presented
in the remainder of this section have been normalised as follows:

normalised time =
(overall execution time)× (computing threads)

(maxIterations)× (array size)2
.

Thus, each timing result represents the time needed for calculating one instance of
ui,j plus the overhead due to the loops (whichever implementation is chosen).

5.6.1.1 Cost of refactoring

A first round of tests has been run without parallelism, in order to estimate the
overhead introduced by turning regular for-loops into their object-oriented coun-
terparts. These tests have been run for array sizes from 100 to 1000 (in steps of
100).

Figure 5.7 shows the results obtained with the IBM JVM 1.4.2 on the Athlon
machine.11 Figures 5.8 and 5.9 show the results obtained on the same machine with
the Sun JVM 1.4.2 in client and server modes, respectively. Figures 5.10 and 5.11

11See Section 5.4.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 122

show the results obtained on the same machine with the Sun JVM 1.5.0 in client
and server modes, respectively. Figure 5.12 shows the results obtained with the Sun
JVM 1.4.1 on the Sun machine. Figure 5.13 shows the results obtained with the
SGI JVM 1.4.1 on the SGI Origin. (The array of size 100× 100 fits entirely in the
Athlon cache, and so does a large part of the array of size 200× 200, which explains
better performance results for these sizes.)

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

Athlon XP2500+ - ajc 1.2.1 - IBM JVM 1.4.2

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.7: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on IBM JVM 1.4.2/Athlon.

These graphs show that the overhead of using the RectangleLoopX models
depend on the JVM and on the architecture. The overhead of method calls due to
the loop object-model and to the introduction of an intermediate variable (from
methodBasicA to methodBasicB, see Listings 5.15 and 5.16) appears to be much
more important with the SGI JVM than with the others. Surprisingly, introducing
an extra variable and changing the stride to 1 improves the performance on the Sun
JVM 1.4.2 (in client mode); and, with the SGI JVM, methodRectangleLoopC gives
better results than methodBasicB.

On the Athlon machine, the relative overhead of refactoring the for-loops into
the object model is less visible with the Sun client JVMs and the IBM JVM than
with the Sun server JVMs. The fastest results are obtained with the IBM JVM,

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 123

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Athlon XP2500+ - ajc 1.2.1 - SUN JVM 1.4.2 (client mode)

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.8: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM 1.4.2 (client)/Athlon.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Athlon XP2500+ - ajc 1.2.1 - SUN JVM 1.4.2 (server mode)

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.9: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM 1.4.2 (server)/Athlon.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 124

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

Athlon XP2500+ - ajc 1.2.1 - SUN JVM 1.5.0 (client mode)

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.10: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM 1.5.0 (client)/Athlon.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50

Athlon XP2500+ - ajc 1.2.1 - SUN JVM 1.5.0 (server mode)

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.11: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM 1.5.0 (server)/Athlon.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 125

100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Sun Sparc (4 processors) - ajc 1.2.1 - SUN JVM 1.5.0 (64-bit server mode)

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

na
n

o
se

c)

Figure 5.12: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on Sun JVM 1.5.0 (server, 64-bit mode)/Sparc.

100 200 300 400 500 600 700 800 900 1000
0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

SGI Origin (16 processors) - ajc 1.2.1 - SGI 1.4.1

BasicA BasicB RectangleLoopA RectangleLoopB RectangleLoopC

Array size

T
im

e
 (

na
n

os
e

c)

Figure 5.13: Performance results for the Red-Black application, using object-
oriented loops, without parallelism, on SGI JVM 1.4.1/MIPS.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 126

where the overhead is hardly noticeable on the graphs. The Sun server JVMs reach
similar performance for the regular for-loops, but the cost of refactoring them into
objects is much more important when using the Sun JVMs, even in server mode,
than when using the IBM JVM.

In all cases, model RectangleLoopA (which is based on delegation) performs
worse than RectangleLoopB (which relies on inheritance), which performs worse
than RectangleLoopC (which is also based on inheritance, but maintains the inner
loop inlined). However, the main difference between the Sun JVMs and the IBM
JVM is that the IBM JVMbetter optimises themethod calls in the inheritance-based
model (RectangleLoopB). This can be explained by a more aggressive inlining
strategy implemented in the IBM JVM [SOK+04]. The worst results, obtained
with the SGI JVM, can probably be explained by the lack of interest and investment
from SGI in Java-related technology.

5.6.1.2 Cost of parallelising

In a second round of tests, the version into which an aspect for parallelising the
loops has been woven is run.

The aspect for parallelising the loops follows the structure shown in Listing C.2.
In particular, the pointcuts utilised for making the selections of which loops are to
be parallelised match the creation of the instances of RectangleLoopX (which can
then be refined with withincode or within), as shown in Listing 5.17. When using
models RectangleLoopB and RectangleLoopC, which use inheritance, the loop se-
lection could also be based on the names of the classes extending RectangleLoopB
or RectangleLoopC.

Figure 5.14 shows the results obtained using the Sun machine with four Sparc
processors (using 1, 2, 3 and 4 threads). Figures 5.15 and 5.16 show the results
obtained on the dual Pentium-III machine, using the Sun JVM 1.5.0 (server mode)
and the IBM JVM 1.4.2, respectively (using 1 and 2 threads). The results show that
methodBasicX and methodRectangleLoopX are not particularly affected by the
parallelisation aspect. Remember that, for normalisation, the execution times on
several threads (for method methodMTRectangleLoopX) have been multiplied by
the number of threads. This has the effect of adding in the per-iteration overhead
times due to parallel execution.

The time overheads for weaving the parallelisation aspect, even using a single
thread, are not surprising since there is a cost for dealing with any pool of threads

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 127

Listing 5.17: Writing pointcuts for parallelising the object-oriented loop models.
pointcut rectAinstantiation():

call (RectangleLoopA.new(..)) && !within(ParallelisationAspect);

RectangleLoopA around (Runnable2DLoopBody loopBody,
int minI, int maxI,
int minJ, int maxJ):

rectAinstantiation() && args (loopBody, minI, maxI, minJ, maxJ) {
return new MTRectangleLoopA (loopBody,minI,maxI,minJ,maxJ) ;

}

class MTRectangleLoopA extends RectangleLoopA {
private final Runnable[] subLoops ;
public MTRectangleLoopA (Runnable2DLoopBody loopBody,

int minI, int maxI, int minJ, int maxJ) {
super(loopBody, minI, maxI, minJ, maxJ) ;
subLoops = new Runnable [NUM_PROC] ;
int width = (int) Math.ceil(

((double) (maxI - minI)) / (double) NUM_PROC);
for (int k=0; k<NUM_PROC; k++) {

int min = minI + k*width ;
int max = minI + (k + 1) * width - 1;
if (max > maxI) max = maxI;
subLoops[k] =

new RectangleLoopA(loopBody, min, max, minJ, maxJ);
}

}
public void run () {

threadPool.run(subLoops) ;
}

}

pointcut rectBinstantiation():
call(RectangleLoopB+.new(..)) && !within(ParallelisationAspect);

after() returning (RectangleLoopB temp):
rectBinstantiation() {

temp.subLoops = new Runnable [NUM_PROC] ;
int width = (int) Math.ceil(

((double)(temp.maxI-temp.minI))/(double)NUM_PROC);
for (int k=0; k<NUM_PROC; k++) {

int min = temp.minI + k*width ;
int max = temp.minI + (k + 1) * width - 1;
if (max > temp.maxI) max = temp.maxI;
temp.subLoops[k] = new MiniLoopB(temp, min, max) ;

}
}

void around (RectangleLoopB loop):
call(void *.run(..)) && target(loop)

&& !within(ParallelisationAspect) {
threadPool.run (loop.subLoops) ;

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 128

100 400 800
0

50

100

150

200

250

300

350

400

Sun Sparc (4 processors) - ajc 1.2.1 - SUN JVM 1.5.0 (64-bit server mode)

BasicA BasicB RectangleLoopA MTRectangleLoopA
(1 Thread)

MTRectangleLoopA
(2 Threads)

MTRectangleLoopA
(3 Threads)

MTRectangleLoopA
(4 Threads)

RectangleLoopB MTRectangleLoopB
(1 Thread)

MTRectangleLoopB
(2 Threads)

MTRectangleLoopB
(3 Threads)

MTRectangleLoopB
(4 Threads)

RectangleLoopC MTRectangleLoopC
(1 Thread)

MTRectangleLoopC
(2 Threads)

MTRectangleLoopC
(3 Threads)

MTRectangleLoopC
(4 Threads)

Array size

T
im

e
 (

na
n

o
se

c)

Figure 5.14: Performance results for the Red-Black application, using object-
oriented loops, with an aspect for parallelisation, on Sun JVM 1.5.0/Sparc.

100 200 400 800
0

20

40

60

80

100

120

140

160

180

200

220

Dual Pentium III - ajc 1.2.1 - SUN JVM 1.5.0 (server mode)

BasicA BasicB RectangleLoopA MTRectangleLoopA
(1 Thread)

MTRectangleLoopA
(2 Threads)

RectangleLoopB

MTRectangleLoopB
(1 Thread)

MTRectangleLoopB
(2 Threads)

RectangleLoopC MTRectangleLoopC
(1 Thread)

MTRectangleLoopC
(2 Threads)

Array size

T
im

e
 (

n
a

no
se

c)

Figure 5.15: Performance results for the Red-Black application, using object-
oriented loops, with an aspect for parallelisation, on Sun JVM 1.5.0/Pentium-III.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 129

100 200 400 800
0

20

40

60

80

100

120

140

160

180

200

Dual Pentium III - ajc 1.2.1 - IBM JVM 1.4.2

BasicA BasicB RectangleLoopA MTRectangleLoopA
(1 Thread)

MTRectangleLoopA
(2 Threads)

RectangleLoopB

MTRectangleLoopB
(1 Thread)

MTRectangleLoopB
(2 Threads)

RectangleLoopC MTRectangleLoopC
(1 Thread)

MTRectangleLoopC
(2 Threads)

Array size

T
im

e
 (

n
a

no
se

c)

Figure 5.16: Performance results for the Red-Black application, using object-
oriented loops, in parallel, on IBM JVM 1.4.2/Pentium-III.

(including a pool of one). On the 4-processor machine, the overhead for paral-
lelising using 1 to 3 threads is consistent with the cost of synchronisation. More
surprisingly, the cost of using four threads is much higher than the others. This is
most likely explained by the last thread competing on the fourth and final processor
with the internal threads of the JVM. Under Unix, JVMs create several processes
—even for single-threaded applications— for handling system functions such as
memory management and just-in-time compilation. These processes compete for
processor time with the application threads.

5.6.2 LOOPSAJ approach

The Red-Black algorithm works on a square array of size (N + 2)× (N + 2). The
iterations only modify the values ui,j for (i, j) ∈ [1..N]2. Subsequently, the loop is
not working on an array from 0 to length, so it is not possible to write a pointcut
based on the array type. The pointcuts used for advising loops in this model are
therefore cflow-based.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 130

Note that the pointcut “loop() && !cflowbelow(loop())” selects the out-
ermost loop only, while “loop() && cflowbelow(loop())” selects all the inner
loops, regardless of their degree of nesting.

In the Red-Black algorithm, the loops that are to be parallelised are the second
inner loops, labelled iloop1 and iloop2 in Listing 5.18. The labels on the loops
in this listing are only included for reference from this text, and do not have any
effect on the loop recognition or on the produced code.

In order to prevent the outermost loop (labelled testconvergenceloop) from
being recognised to be of the form for(int k=MIN; k<MAX; k+=STRIDE), which
would bind arguments to the args(..) pointcut, methodBasicA has been slightly
modified, and this outermost loop has been rewritten so that it decreases the iter-
ations counter. This counter was placed here purely for the sake of the tests; oth-
erwise, the loop would be of the form: while(error(u,solution)>tolerance),
and would not have been matched by a pointcut of the form “loop() &&

args(min, max, stride, ..)”. A similar modification has been made to
methodBasicB.

Listing 5.18: Red/Black test-case: methodBasicA.
public void methodBasicA (double u[][]) {

final int iterations = maxIterations;
final int N1 = N+1 ;

testconvergenceloop:
while (iterations > 0) {

// Iterates through the red points.

iloop1:
for (int i = 1; i < N1; i++)

jloop1:
for (int j = (2 - (i % 2)); j < N1; j += 2)

u[i][j] = /* ... */

// Iterates through the black points.

iloop2:
for (int i = 1; i < N1; i++)

jloop2:
for (int j = (1 + (i % 2)); j < N1; j += 2)

u[i][j] = /* ... */

iterations--;
}

}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 131

Thepointcuts shown inListing 5.19 select the loops to be parallelised inmethod-
BasicA and methodBasicB. Pointcut loopmaybeunderloopwithnoargs matches
the loops that are not within a loop that would itself have arguments, but that
may be within a loop without arguments. This restriction is represented by the
following term in loopmaybeunderloopwithnoargs: “!cflowbelow(loop() &&

args(*,*,*,..))”.

Listing 5.19: Pointcuts for parallelising loops in the Red-Black algorithm (basic
methods A and B).

pointcut methodsAB():
withincode(* ExampleRedBlack.methodBasicA(..)) ||
withincode(* ExampleRedBlack.methodBasicB(..)) ;

pointcut loopmaybeunderloopwithnoargs():
loop() && !cflowbelow(loop() && args(*,*,*,..)) ;

pointcut loopsAB():
loopmaybeunderloopwithnoargs() && methodsAB();

Refactoring can also be a means of selecting the second innermost loop, by
extracting amethod for the content of the outermost loop, as shown in Listing 5.20.
The corresponding pointcuts are written as shown in Listing 5.21.

methodBasicA, methodBasicB and methodBasicC have been compiledwithout
any aspect (used as a reference), with an aspect executing only proceed() (to show
the cost of weaving), and with an aspect executing the loop in a thread pool (to
show the cost of parallelising).

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 132

Listing 5.20: Red/Black test-case: methodBasicC.
public void methodBasicC (final double u[][]) {

int maxIterations = /* ... */

int iterations = 0;
final int N1 = N+1 ;

while (iterations < maxIterations) {
// Iterates over the whole array.

innerMethodBasicC(u, N1);

iterations++;
}

}

private void innerMethodBasicC(final double[][] u, final int N1) {
// Iterates through the red points.

for (int i = 1; i < N1; i++)
for (int j = (2 - (i % 2)); j < N1; j += 2)

u[i][j] = /* ... */

// Iterates through the black points.

for (int i = 1; i < N1; i++)
for (int j = (1 + (i % 2)); j < N1; j += 2)

u[i][j] = /* ... */

}

Listing 5.21: Pointcuts for parallelising loops in the Red-Black algorithm (method-
BasicC).

pointcut methodsC(): withincode(* ExampleRedBlack.methodBasicC(..)) ;

pointcut innerMethodsC():
withincode(* ExampleRedBlack.innerMethodBasicC(..)) ;

pointcut loopsC():
loop() && !cflowbelow(loop() && innerMethodsC())

&& innerMethodsC() ;

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 133

5.6.2.1 Cost of weaving

The results of execution on the Athlon machine are presented in Figures 5.17
and 5.18, using the IBM JVM 1.4.2 and the Sun JVM 1.5.0 (server mode), respec-
tively.

100 400
0

5

10

15

20

25

30

Athlon XP2500+ - IBM JVM 1.4.2

BasicA - No aspect BasicA - Only proceed BasicA - Threadpool BasicB - No aspect

BasicB - Only proceed BasicB - Threadpool BasicC - No aspect BasicC - Only proceed

BasicC - Threadpool

Array size

T
im

e
 (

na
n

os
e

c)

Figure 5.17: Performance results for the Red-Black application, using LOOPSAJ,
without parallelism, on IBM JVM 1.4.2/Athlon.

The penalty for weaving aspects (with just proceed(), and even with a pool of
1 thread) appears to be similar with both JVM configurations, and, in both cases, it
is more visible on the smaller array sizes. The overhead ranges from about 10% (for
methodBasicA with array size 400, on the IBM JVM) to 70% (for methodBasicA
with array size 100, on the Sun JVM).

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 134

100 400
0

5

10

15

20

25

30

35

Athlon XP2500+ - SUN JVM 1.5.0 (server mode)

BasicA - No aspect BasicA - Only proceed BasicA - Threadpool BasicB - No aspect

BasicB - Only proceed BasicB - Threadpool BasicC - No aspect BasicC - Only proceed

BasicC - Threadpool

Array size

T
im

e
 (

na
n

os
e

c)

Figure 5.18: Performance results for the Red-Black application, using LOOPSAJ,
without parallelism, on Sun JVM 1.5.0 (server)/Athlon.

5.6.2.2 Cost of parallelising

Figures 5.19 and 5.20 presents results obtained with parallelism.
Although the overhead of “parallelising on 1 thread” is not really visible, the

cost is not negligible when several threads are used. In particular, the smaller the
array (and, therefore, the shorter the overall computation), the less negligible this
overhead is. This is particularly visible for size 100 on the Sun Sparc machine: there
is an overhead of about 700%when running on 4 threads (which means that it takes
twice as long to get the result on 4 processors as it takes on a single processor). This
bad result can be explained by the creation of Runnables for each iteration. Indeed,
this cost seems to decrease when the array size increases. The best performance
gain obtained in this set of results is with the IBM JVM on the dual Pentium-III
machine for size 200: when the array is split into two blocks, each block fits into
the cache of each processor, which leads to a negative overhead. (There is a similar
effect when using the object-oriented loops—see Figure 5.16.)

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 135

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

180

200

220

Dual Pentium III - methodBasicA - IBM JVM 1.4.2

No aspect (1 Thread) Only proceed (1 Thread) Threadpool (1 Thread) Threadpool (2 Threads)

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.19: Performance results for the Red-Black application, using LOOPSAJ,
with an aspect for parallelisation, on IBM JVM 1.4.2/Pentium-III.

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Sun Sparc (4 processors) - methodBasicA - SUN JVM 1.5.0 (client mode)

No aspect (1 Thread) Only proceed (1 Thread) Threadpool (1 Thread) Threadpool (2 Threads)

Threadpool (3 Threads) Threadpool (4 Threads)

Array size

T
im

e
 (

n
an

o
se

c)

Figure 5.20: Performance results for the Red-Black application, using LOOPSAJ,
with an aspect for parallelisation, on SUN JVM 1.5.0 (client mode)/Sparc.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 136

5.6.3 Performance comparison

The general trend for the performance of the object-oriented loops is ordered as
follows, fromworst to best: model RectangleLoopA, model RectangleLoopB and
model RectangleLoopC.

Figure 5.21 shows a comparison between the versions compiled without aspects
(both with ajc and abc), the refactored versions with the three RectangleLoopX
models, and the version where LOOPSAJ is used to weave a proceed() advice
around the loop to be parallelised. In terms of cost of refactoring and cost of
weaving directly into the loop, the LOOPSAJ version always performs better than
models RectangleLoopA and RectangleLoopB, and nearly as well as the best
refactored model, RectangleLoopC.

Figures 5.22, 5.23 and 5.24 show a comparison of the same versions with par-
allelisation aspects, on three different configurations of machine and JVM. The
“sequential” and the “1-thread” versions differ in that the sequential results show
the cost of just weaving and refactoring, as above, whereas the 1-thread results
show the cost of refactoring and weaving a parallelisation advice configured to use
only 1 thread.

In parallel, the performance of the version using the LOOPSAJ aspects appears
to be in-between the performance of the versions using models RectangleLoopB
and RectangleLoopC, as for the sequential version. However, the overhead due
to parallelisation with the LOOPSAJ aspect increases with the number of threads
used. As shown in Section 5.6.2.2, in the LOOPSAJmodel, an instance of Runnable
is created for each iteration of the parallelised loop. This incurs a cost which is
more visible on small tasks, i.e. on smaller array sizes, or on smaller portions of
arrays (that is, when the work for the whole array is divided onto more threads).
Moreover, this overhead makes the parallelisation on all the processors with the
LOOPSAJ model worse than using the refactored object-oriented loops, on this
kind of test-case. As mentioned in Section 5.6.1.2, when the number of threads
used for the computation is the same as (or greater than) the number of processors
available, these threads have to share resources with other threads used internally in
the JVM, such as the just-in-time compiler and the garbage collector. When using
the LOOPSAJ aspect, creating instances of Runnable for each iteration not only
incurs an overhead per-se, but also increases the load on the garbage collector, which
has to dispose of these newobjects after each iteration aswell. This is themost likely
cause of the much larger overhead that occurs when using all the processors. In this

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 137

case, the results obtained using the LOOPSAJ aspect are substantially degraded, and
even worse than the results obtained with the worst-performing object-oriented
loop (RectangleLoopA) on the dual Pentium-III.

100 400
0

5

10

15

20

25

30

35

40

45

Athlon XP2500+ - SUN JVM 1.5.0 (server mode)

BasicA (ajc 1.2.1) BasicA (abc) RectangleLoopA RectangleLoopB RectangleLoopC

LoopsAJ (BasicA)
proceed

Array size

T
im

e
 (

n
a

no
se

c)

Figure 5.21: Comparison of object-oriented loops and loop join point (Red-Black
algorithm), single Athlon, Sun JVM 1.5.0 (server mode).

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 138

Sequential 1 Thread 2 Threads
0

20

40

60

80

100

120

140

160

180

200

220

Dual Pentium III - array size 400 - IBM JVM 1.4.2

BasicA (ajc 1.2.1) BasicA (abc 1.0.2) RectangleLoopA RectangleLoopB

RectangleLoopC LoopsAJ

Number of threads

T
im

e
 (

na
n

os
e

c)

Figure 5.22: Comparison of object-oriented loops and loop join point (Red-Black
algorithm), dual Pentium-III, using the IBM JVM 1.4.2.

Sequential 1 Thread 2 Threads 3 Threads 4 Threads
0

25

50

75

100

125

150

175

200

225

250

275

300

325

Sun Sparc (4 processors) - array size 400 - SUN JVM 1.5.0 (client mode)

BasicA (ajc 1.2.1) BasicA (abc 1.0.2) RectangleLoopA RectangleLoopB

RectangleLoopC LoopsAJ

Number of threads

T
im

e
 (

n
an

o
se

c)

Figure 5.23: Comparison of object-oriented loops and loop join point (Red-Black
algorithm), 4-processor Sun Sparc, using the Sun JVM 1.5.0 (client).

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 139

Sequential 1 Thread 2 Threads 3 Threads 4 Threads
0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

Sun Sparc (4 processors) - size 400 - SUN JVM 1.5.0 (64-bit server mode)

BasicA (ajc 1.2.1) BasicA (abc 1.0.2) RectangleLoopA RectangleLoopB

RectangleLoopC LoopsAJ

Number of threads

T
im

e
 (

n
an

o
se

c)

Figure 5.24: Comparison of object-oriented loops and loop join point (Red-Black
algorithm), 4-processor Sun Sparc, using the Sun JVM 1.5.0 (64-bit server).

5.7 Test-case: the Crypt application

The crypt application, part of the Java Grande Forum benchmark suite, is described
in Section 3.1.1. The main computation is located in method cipher_idea, which
is called twice by method Do, as shown in Listing 5.22.

5.7.1 AspectJ approach: minor refactoring

As described in Section 3.1.1, cipher_idea can be parallelised after a small mod-
ification of the code. This small modification only adds a couple of method call
indirections, and its effect on performance falls far below the precision of the
timers, and is thus not easily measurable. The aspect for Java-thread parallelisation,
as presented in Listing 3.4, is woven into this application for the tests presented in
Section 5.7.3.

5.7.2 LOOPSAJ approach

Method cipher_idea contains a nest of two loops. Both are recognised by the
loop() pointcut. However, only the outer loop is iterating over an array. As

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 140

Listing 5.22: Implementation of cipher_idea and Do.
private void cipher_idea(byte[] text1, byte[] text2, int[] key) {

/* Declaration of local variables and initialisations */

...

for (int i = 0; i < text1.length; i += 8) {
int r = 8 ;

/* ... */

do {
/* ... */

} while (r-- != 0) ;

/* ... */

}
}

void Do() {
// Start the stopwatch.

JGFInstrumentor.startTimer("Section2:Crypt:Kernel");

cipher_idea(plain1, crypt1, Z); // Encrypt plain1.

cipher_idea(crypt1, plain2, DK); // Decrypt.

// Stop the stopwatch.

JGFInstrumentor.stopTimer("Section2:Crypt:Kernel");
}

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 141

described in Section 5.3, there are two ways of writing a pointcut that will match
the outer loop:

• a data-based pointcut, which will match the array of type byte[];

• a cflow-based pointcut, which will internally use a counter.

5.7.3 Performance comparison

This section presents a comparison between five approaches:

• the reference sequential version, which is the original sequential version from
the Java Grande Forum benchmarks;

• two versions, using a data-based and a cflow-based aspect (as described in
Section 5.7.2), that only proceed with the original execution (for measuring
the cost of weaving);

• the reference multithreaded version, which is the original Java threads version
from the Java Grande Forum benchmarks;

• the refactored version, as described in Section 5.7.1, into which aspect Mul-
tiThreadCrypt (see Listing 3.4) has been woven;

• two versionswith an aspect for parallelisation, using a data-based and a cflow-
based aspect, respectively.

Figures 5.25 and 5.26 present speed results12 for these five approaches on a Sparc
4-processor machine, using the Sun JVM 1.4.2 in client mode and the Sun JVM
1.5.0 in 64-bit server mode, respectively. The difference between all the versions is
mostly less than 2%. When parallelising, the smaller array size (SizeA) appears to
incur a bigger overhead than the larger sizes, even with the original multithreaded
version from the Java Grande Forum benchmarks. The version parallelised on
1 thread with the LOOPSAJ data-based version performs slightly better than the
refactored version that uses an AspectJ-only aspect, and performs as well as the
sequential version without aspects.

In this kind of example, where the parallelised loop is executed only a few times,
choosing between the tangled multithreaded version, the version refactored for use

12Note that all the results presented in Section 5.6 are time results, while all the results presented
in Section 5.7 are speed results.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 142

SizeA SizeB SizeC
490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

Sun Sparc (4 processors) - SUN JVM 1.4.2 (client mode)

No aspect Data-based proceed cflow-based proceed Original (1 Thread)

Refactored (1 Thread) Data-based (1 Thread) cflow-based (1 Thread) Original (2 Threads)

Refactored (2 Threads) Data-based (2 Threads) cflow-based (2 Threads) Original (3 Threads)

Refactored (3 Threads) Data-based (3 Threads) cflow-based (3 Threads) Original (4 Threads)

Refactored (4 Threads) Data-based (4 Threads) cflow-based (4 Threads)

Class (size)

S
p

e
ed

 (
K

by
te

/s
)

Figure 5.25: Comparison between the original, the refactored and the loop join
point version of Crypt, in parallel on a 4-processor Sun Sparc, using the Sun JVM
1.5.0 (client). It should be noted that the origin on this graph is not zero and that,
unlike the results presented in Section 5.6, these are speed results.

SizeA SizeB SizeC
800

820

840

860

880

900

920

940

960

980

1000

1020

Sun Sparc (4 processors) - SUN JVM 1.5.0 (64-bit server mode)

No aspect Data-based proceed cflow-based proceed Original (1 Thread)

Refactored (1 Thread) Data-based (1 Thread) cflow-based (1 Thread) Original (2 Threads)

Refactored (2 Threads) Data-based (2 Threads) cflow-based (2 Threads) Original (3 Threads)

Refactored (3 Threads) Data-based (3 Threads) cflow-based (3 Threads) Original (4 Threads)

Refactored (4 Threads) Data-based (4 Threads) cflow-based (4 Threads)

Class (size)

S
p

e
ed

 (
K

by
te

/s
)

Figure 5.26: Comparison between the original, the refactored and the loop join
point version of Crypt, in parallel on a 4-processor Sun Sparc, using the Sun JVM
1.5.0 (64-bit server). It should be noted that the origin on this graph is not zero.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 143

with AspectJ, or the version advising the loop directly with LOOPSAJ is not really
significant in terms of performance, except with the cflow-based pointcut with
LOOPSAJ where the parallelised loop contains other loops. The choice between
these versions is mostly a matter of design and readability of the application and of
the units from which it is constituted.

5.8 Summary

This chapter has investigated two facets of the use of aspects for numerical com-
puting: their impact on flexibility and their impact on performance.

As demonstrated throughout this chapter, and more particularly in Section 5.1,
aspects can provide scientific applications with a flexible design. This flexibility is
gained from two perspectives:

• the decoupling of the numerical concern from the implementation of the
parallelisation; and

• the re-usability of the abstract parallelisation aspects, which could be incor-
porated into many applications.

However, this flexibility comes at a cost which depends heavily on the JVMused
(because the examples are based on Java) and on the selection mechanism used.
The performance of JVMs is a general problem addressed by the major vendors
and virtual-machine researchers. It is not specific to aspects for high-performance
computing, nor even to AOP.

The implementation of the selectionmechanism is an area for which specific op-
timisations could be achieved, but often seem not to be. In particular, all the values
of the counters used in the cflow-based LOOPSAJ examples, and the correspond-
ing runtime tests, could be computed at compile-time. Indeed, the loop join point
cannot be a regular entry point at the interface of a Java class. Therefore, wherever
the counter is incremented or decremented could be predicted theoretically in cir-
cumstances where this mechanism is used as a means of selecting a particular degree
of nesting. Such optimisation would be related to the pcflow pointcut envisaged
by Gregor Kiczales in his keynote speech at the AOSD conference in 2003 [Kic03].
The pcflow pointcut would “predict” the control-flow at compile-time, based on
heuristics, and perform what cflow currently does at runtime.

CHAPTER 5. APPLICATIONS AND PERFORMANCE EVALUATION 144

Another major disadvantage of the cflow-based selection is that it only permits
the selection of either the outer loop or all the inner loops. No particular degree of
nesting can be pin-pointed. Apossibleway to solve this problemwould be to extend
AspectJ with a new pointcut cflowlevel(int, Pointcut). This pointcut could
be implemented in a manner similar to the original cflow counter implementation;
the runtime test would check whether the value of the counter is that given as
the first parameter to cflowlevel, instead of simply comparing the counter value
against zero.

In terms of performance, the selectionmechanismwould probably benefit from
the techniques employed in SCoPE13 [AM05], in which certain runtime tests in
the pointcut expressions are eliminated when their outcome can be predicted at
compile-time.

For parallelisation, the Java Thread model, which requires the creation of in-
stances of Runnable, makes it less advantageous for small tasks to use the loop
join point approach than the refactored approach, since it may be possible to adapt
refactoring so that fewer instances of Runnable are created. However, when more
substantial tasks are used, the loop join point approach gives performance results
that can compete with the best refactored versions for aspects, and even with
tangled parallel implementations.

13Static Conditional Pointcut Evaluator for AspectJ.

Chapter 6

Conclusions

6.1 Contributions

The work presented in this thesis contributes to improving the programming mod-
els in scientific computing in order to decouple the various concerns that must be
dealt with in scientific software.

The two primary concerns of scientific computing are the numerical models
(that is, what the application is supposed to do) and the speed of their execu-
tions (because, coincidentally, numerical models tend to require a large amount of
computing power). Using programming languages such as Fortran, C++ or Java,
Section 1.3 has identified that code for these two concerns become tangled one
with the other. This thesis presents a novel step towards resolving the tensions
between clarity of the description of numerical models and details of the (mostly
parallel) implementation for high performance.

As mentioned in Chapter 2, one of the first examples in the literature of AOP
involved encapsulating the optimisation concern separately from the numerical
concern, in a graphic application programmed in Lisp. However, further devel-
opments in AOP were driven away from the domain of fine-grained optimisation
and from Lisp, to embrace languages that have become more appealing for a wider
audience in the software industry.

The relative success of AOP, as a programming model, is largely due to the
success of AspectJ. Because AspectJ is Java-based, its success is also closely linked
to the current popularity of Java.

Although the use of Java in the numerical computing community is still uncom-
mon and perhaps controversial, it is growing, almost certainly due to substantial

145

CHAPTER 6. CONCLUSIONS 146

improvements in the performance of the underlying Java Virtual Machines. There-
fore, AspectJ has proved to be a suitable platform to experiment with AOP for
scientific computing, and has provided the work reported in this thesis with both
theoretical and practical results.

Chapter 3 provides mechanisms for using AspectJ in order to encapsulate the
parallelisation concern in an aspect, that is, separate from the numerical code. This
is achieved with varying degrees of success. The major problem encountered lies in
the underlying abstraction that is utilised to describe the numerical problem, and
the ability that aspects have to define and act upon recognition of this abstraction.

The prime mechanism upon which AOP is based is the concept of a join point.
The challenge for this thesis has been to formulate the concept of join point
as an abstraction that can make the link between the numerical model and the
implementation of its performance. As a result, the model for a join point for
loops is proposed, in Chapter 4.

6.1.1 Contributions to scientific computing

The major contribution of this thesis has been to demonstrate the possibility of
using aspects for decoupling completely the implementation of the parallelisation
from the implementation of the numerical models. As shown throughout Chap-
ters 3, 4 and 5 (more particularly in Section 5.1), the example applications of the
techniques presented in this thesis make it possible to use the same base numerical
components with different parallelisation aspects, and the same aspects with dif-
ferent numerical components. In such systems, the numerical code that forms the
base components is totally decoupled from the code implementing the parallelisa-
tion. The benefits in terms of reusability are immediate. The readability is also
improved, compared with implementations that are not aspect-oriented, since the
numerical concern and the parallelisation concern are not at all tangled. Reasoning
with aspects might incur a certain learning curve, but this can be eased by the use
of tools that assist the development process.

6.1.2 Contributions to aspect-oriented programming

As far as the AOP community is concerned, the thesis demonstrates the need for,
and the possibility of making, aspects capable of handling complex behaviours,

CHAPTER 6. CONCLUSIONS 147

which are not necessarily limited to acting upon actions occurring at the (named)
interface of the objects or traditional modules.

The join point for loops presented in Chapter 4 is a join point that could
not be targetted by any combination of AspectJ pointcuts. Although loops are
usually part of the basic programming toolkit, providing mechanisms for AspectJ-
like languages to be able to handle loops requires in-depth analysis of the base
program. Providing AspectJ with the ability to intervene at loop-level cannot be
solely addressed by enhancing pointcut expressiveness, that is, by improving the
mechanisms for expressing complex pointcuts by combining primitive pointcut
descriptors. This thesis makes the case for providing aspect-oriented tools with
fine-grained join points, corresponding to primitive pointcut descriptors on their
own, and encompassing complex behaviours.

In addition, LOOPSAJ —the extension to abc that provides AspectJ with a
join point for loops, as presented in Chapter 4— has been released1 under an
open source license. This both demonstrates the practical implementation realised
for this thesis and gives other researchers willing to explore new join points a
comprehensive example of a complex extension.

6.1.3 Performance evaluation

The performance results obtained in Chapter 5 depend on both the use of as-
pects and the use of Java. Because AspectJ relies on the introduction of new
accessory methods into classes to implement the aspects, some degradation of
the performance was to be expected. However, results on the fastest JVM show
that the overhead of using aspects can be substantially reduced to a point where
it is almost unnoticeable. Aspects can therefore contribute to improving speed
of execution (via parallelisation) without introducing a penalty due to the higher
abstraction, as long as the underlying compiler (whether static or just-in-time)
optimises away this overhead. Optimisations of Java code and Java Virtual Ma-
chines are an on-going subject of research. Improvements in this domain will
definitely be beneficial to Java-based aspect-oriented code. In addition, optimising
the specific causes of overheads introduced by aspects is also an on-going subject
of research [ACH+04b, ACH+05a] which has already provided successful results.

1LOOPSAJ can be obtained from: http://www.cs.manchester.ac.uk/cnc/projects/
loopsaj/.

http://www.cs.manchester.ac.uk/cnc/projects/loopsaj/
http://www.cs.manchester.ac.uk/cnc/projects/loopsaj/

CHAPTER 6. CONCLUSIONS 148

6.2 Critique

A join point such as the join point for loops provides aspect-orientation with
more expressiveness regarding fine-grained and complex behaviours. However, the
practical problems related to the loop selection (see Section 4.5) show that having
fine-grained join points is not sufficient unless these are accompanied by more
expressive pointcut description mechanisms.

Pointcut expressiveness is a problem that has been generally identified in
AOP [OMB05]. Relying on name patterns for writing pointcuts is convenient
but unsatisfactory. For example, matching the methods that “set” some values
in a class —such as setX(int X), setY(int Y), and setXY(int X, int Y) in a
Point class— can be done using a pointcut descriptor based on the regular expres-
sion “set*”, but, unfortunately, this mechanism relies on compliance with naming
conventions for the components of an application. Even without taking foreign
languages into consideration, pattern matching may have undesired side-effects.
The expression “set*” might also match methods such as “setup()”, which might
not be intended. Since the loop join point is not associated with a named signature
(except via its arguments), pointcut expressiveness becomes particularly important
for selecting loops.

For practical reasons, in particular for being able to execute test programs,
the base model used in this thesis has been that of AspectJ. The weaving model
of AspectJ used since version 1.1 is entirely based on the bytecode. As a result,
this model works even on third-party classes for which the source code is not
available. However, this constraint also implies a loss of the abstraction used by
the programmer in the source code. In particular, this implies that potential loop
labels or other forms of loosely coupled annotations2 are lost, whereas they might
have helped improve the selection mechanisms if source-based weaving had been
available. A source-based approach has also been investigated (see Appendix B),
but the underlying models and tools were not mature enough to be used as a basis
for the final work. This problem might have a hybrid solution that would keep

2 Recent developments in AspectJ have introduced the ability to write pointcut descriptors
based on Java 5 annotations. Although this may seem a step back towards explicit annotations
and compiler directives, this in fact provides a higher abstraction so long as these annotation
do not describe the implementation explicitly. In the case of refactored methods, annotations
such as GraphicRoutine or even Parallelisable might be acceptable, but annotations such as
ParallelisableUsingMPIon4Machines would be too descriptive and render the use of aspects
useless.

CHAPTER 6. CONCLUSIONS 149

more information about the source-code in the bytecode representation (or in
the intermediate representation used within the compiler), at the expense of the
possibility to use aspects on arbitrary bytecodes.

More expressiveness could also be gained by using genericity and, in particular,
fine-grained genericity [KR05].

6.3 Related and future work

Although the applications presented in this thesis are focussed on performance im-
provement through parallelisation, the join point for loops presented in Chapter 4
could be applied to other concerns, such as performance monitoring and profil-
ing, using the methods described in [DHS+03, Bod05], or checkpoint-and-restart
mechanisms, which may require substantial aspects. Moreover, simple timers are
trivial but useful to implement using aspects.

This thesis has provided the basis for aspect-oriented handling of performance at
application level. However, the performance of an application also depends onother
layers of the system. The next step in this line of research could consist of trying to
address concerns that cut across all the elements of the system, from hardware to
application, via operating system and libraries. Encapsulating the vertical-profiling
concern [HSDH04] into aspects could be an example of a cross-system concern.

The main aspect-oriented tools currently rely on object-oriented designs. This
thesis has shown that it is possible to use AspectJ to intervene at a fundamentally
procedural element —the loop— either by turning the loop into an object (in
Section 3.2) or by providing a join point for loops (in Chapter 4). However,
aspect-orientation, as a principle, need not rely on object-orientation. This is of
particular importance for dealing with legacy code from the scientific community.
Aspect-orientation has recently been brought to COBOL [LS05], in which billions
of lines of legacy code have been written, and are still being written.3 The main
language used by the scientific community, Fortran, has evolved from Fortran 77,
procedural, to Fortran 90, which contains elements of object-orientation. Perhaps
Fortran 2015 will be aspect-oriented?

3This formulationmay seem awkward, but the codewritten today is the legacy code of tomorrow.

Appendix A

AspectJ syntax guide

AspectJ1 is an aspect-oriented extension to Java. The language is fully compatible
with pure Java. However, it introduces new kinds of structures and new keywords
towrite aspects. This appendix presents a summary of the syntax ofAspectJ version
1.2.

“AspectJ adds to Java just one new concept, a join point – and that’s really just a
name for an existing Java concept. It adds to Java only a few new constructs: pointcuts,
advice, inter-type declarations and aspects. Pointcuts and advice dynamically affect
program flow, inter-type declarations statically affect a program’s class hierarchy, and
aspects encapsulate these new constructs.
A join point is a well-defined point in the program flow. A pointcut picks out certain
join points and values at those points. A piece of advice is code that is executed when a
join point is reached. These are the dynamic parts of AspectJ.
AspectJ also has different kinds of inter-type declarations that allow the programmer
to modify a program’s static structure, namely, the members of its classes and the
relationship between classes.
AspectJ’s aspects are the unit of modularity for crosscutting concerns. They behave
somewhat like Java classes, but may also include pointcuts, advice and inter-type
declarations”[asp].

1http://www.eclipse.org/aspectj/

150

http://www.eclipse.org/aspectj/

APPENDIX A. ASPECTJ SYNTAX GUIDE 151

A.1 General structure of aspects

In AspectJ, aspects are syntactically similar to Java classes. Aspects are defined via
the “aspect” keyword, where “class” would have been used to define a class in
Java. Aspects can contain several categories of members:

• Java classes, methods, and fields, in the same way as they would be contained
in a class;

• inter-type declarations (ITD) (also know as introductions) make it possible to
intervene in the structure of other classes or aspects, by adding newmembers
(see Section A.2);

• pointcut descriptors: these can be named and are formed by combinations of
conjunctions and disjunctions of pointcut expressions—including primitive
pointcuts (see Section A.3);

• pieces of advice: before, after or around pieces of advice can be considered
as the aspect equivalents of methods. They do not have names, but they
contain a pointcut (namedor anonymous). They contain the Java instructions
to execute when encountering join points matched by their pointcut (see
Section A.4); and

• declarations (which are beyond the scope of this appendix).

A.2 Inter-type declarations

Inter-type declarations make it possible to add new members (fields and methods)
to classes, via an aspect. A basic example is shown in Listing A.1. Without aspect
ToStringAspect, class Test does not override method toString() defined in
Object. Aspect ToStringAspect introduces method Test.toString() into class
Test. This is a modification of the structure of the class that is visible throughout
the system.

APPENDIX A. ASPECTJ SYNTAX GUIDE 152

Listing A.1: Inter-type declaration example.
public class Test {

int value = 10 ;

public static void main(String[] args) {
Test t = new Test() ;
System.out.println("Test: "+t) ;

}
}

public aspect ToStringAspect {
public String Test.toString() {

return Integer.toString(value) ;
}

}

A.3 Pointcut descriptors

The following is an extract from the AspectJ programming guide [asp].

A pointcut is a program element that picks out join points and exposes data from

the execution context of those join points. Pointcuts are used primarily by advice. They

can be composed with boolean operators to build up other pointcuts. The primitive

pointcuts and combinators provided by the language are:

call(MethodPattern) Picks out eachmethod call join pointwhose signaturematches

MethodPattern.

execution(MethodPattern) Picks out each method execution join point whose sig-

nature matches MethodPattern.

get(FieldPattern) Picks out eachfield reference join pointwhose signaturematches

FieldPattern. [Note that references to constant fields (static final fields bound

to a constant string object or primitive value) are not join points, since Java

requires them to be inlined.]

set(FieldPattern) Picks out each field set join point whose signature matches

FieldPattern. [Note that the initializations of constant fields (static final

fields where the initializer is a constant string object or primitive value) are not

join points, since Java requires their references to be inlined.]

call(ConstructorPattern) Picks out each constructor call join point whose signa-

ture matches ConstructorPattern.

APPENDIX A. ASPECTJ SYNTAX GUIDE 153

execution(ConstructorPattern) Picks out each constructor execution join point

whose signature matches ConstructorPattern.

initialization(ConstructorPattern) Picks out each object initialization join

point whose signature matches ConstructorPattern.

preinitialization(ConstructorPattern) Picks out each object pre-initialization

join point whose signature matches ConstructorPattern.

staticinitialization(TypePattern) Picks out each static initializer execution

join point whose signature matches TypePattern.

handler(TypePattern) Picks out each exception handler join point whose signature

matches TypePattern.

adviceexecution() Picks out all advice execution join points.

within(TypePattern) Picks out each join point where the executing code is defined

in a type matched by TypePattern.

withincode(MethodPattern) Picks out each join point where the executing code is

defined in a method whose signature matches MethodPattern.

withincode(ConstructorPattern) Picks out each join point where the executing

code is defined in a constructor whose signature matches ConstructorPattern.

cflow(Pointcut) Picks out each join point in the control flow of any join point P

picked out by Pointcut, including P itself.

cflowbelow(Pointcut) Picks out each join point in the control flow of any join point

P picked out by Pointcut, but not P itself.

this(Type or Id) Picks out each join point where the currently executing object

(the object bound to this) is an instance of Type, or of the type of the identifier

Id (which must be bound in the enclosing advice or pointcut definition). Will

not match any join points from static contexts.

target(Type or Id) Picks out each join point where the target object (the object on

which a call or field operation is applied to) is an instance of Type, or of the type

of the identifier Id (which must be bound in the enclosing advice or pointcut

definition). Will not match any calls, gets, or sets of static members.

APPENDIX A. ASPECTJ SYNTAX GUIDE 154

args(Type or Id, ...) Picks out each join point where the arguments are instances

of a type of the appropriate type pattern or identifier.

PointcutId(TypePattern or Id, ...) Picks out each join point that is picked out

by the user-defined pointcut designator named by PointcutId.

if(BooleanExpression) Picks out each join point where the boolean expression

evaluates to true. The boolean expression used can only access static members,

parameters exposed by the enclosing pointcut or advice, and thisJoinPoint

forms. In particular, it cannot call non-static methods on the aspect or use

return values or exceptions exposed by after advice.

! Pointcut Picks out each join point that is not picked out by Pointcut.

Pointcut0 && Pointcut1 Picks out each join point that is pickedout bybothPoint-

cut0 and Pointcut1.

Pointcut0 || Pointcut1 Picks out each join point that is picked out by either

pointcuts. Pointcut0 or Pointcut1.

(Pointcut) Picks out each join point picked out by Pointcut.

Pointcut definition

Pointcuts are defined and named by the programmer with the pointcut declaration.

pointcut publicIntCall(int i):

call(public * *(int)) && args(i);

A named pointcut may be defined in either a class or aspect, and is treated as a member

of the class or aspect where it is found. As a member, it may have an access modifier

such as public or private.

class C {

pointcut publicCall(int i):

call(public * *(int)) && args(i);

}

class D {

pointcut myPublicCall(int i):

C.publicCall(i) && within(SomeType);

}

APPENDIX A. ASPECTJ SYNTAX GUIDE 155

Pointcuts that are not final may be declared abstract, and defined without a body.

Abstract pointcuts may only be declared within abstract aspects.

abstract aspect A {

abstract pointcut publicCall(int i);

}

In such a case, an extending aspect may override the abstract pointcut.

aspect B extends A {

pointcut publicCall(int i): call(public Foo.m(int)) && args(i);

}

For completeness, a pointcut with a declaration may be declared final.

Though named pointcut declarations appear somewhat like method declarations,

and can be overridden in subaspects, they cannot be overloaded. It is an error for two

pointcuts to be named with the same name in the same class or aspect declaration.

The scope of a named pointcut is the enclosing class declaration. This is different

than the scope of other members; the scope of other members is the enclosing class

body. This means that the following code is legal:

aspect B percflow(publicCall()) {

pointcut publicCall(): call(public Foo.m(int));

}

Context exposure

Pointcuts have an interface; they expose some parts of the execution context of the join

points they pick out. For example, the PublicIntCall above exposes the first argument

from the receptions of all public unary integer methods. This context is exposed by

providing typed formal parameters to named pointcuts and advice, like the formal

parameters of a Java method. These formal parameters are bound by name matching.

On the right-hand side of advice or pointcut declarations, in certain pointcut

designators, a Java identifier is allowed in place of a type or collection of types. The

pointcut designators that allow this are this, target, and args. In all such cases,

using an identifier rather than a type does two things. First, it selects join points as

based on the type of the formal parameter. So the pointcut

pointcut intArg(int i): args(i);

picks out join points where an int (or a byte, short, or char; anything assignable

to an int) is being passed as an argument. Second, though, it makes the value of that

argument available to the enclosing advice or pointcut.

APPENDIX A. ASPECTJ SYNTAX GUIDE 156

Values can be exposed from named pointcuts as well, so

pointcut publicCall(int x): call(public *.*(int)) && intArg(x);

pointcut intArg(int i): args(i);

is a legal way to pick out all calls to public methods accepting an int argument, and

exposing that argument.

There is one special case for this kind of exposure. Exposing an argument of type

Object will also match primitive typed arguments, and expose a "boxed" version of the

primitive. So,

pointcut publicCall(): call(public *.*(..)) && args(Object);

will pick out all unarymethods that take, as their only argument, subtypes ofObject

(i.e., not primitive types like int), but

pointcut publicCall(Object o): call(public *.*(..)) && args(o);

will pick out all unary methods that take any argument: And if the argument was

an int, then the value passed to advice will be of type java.lang.Integer.

The "boxing" of the primitive value is based on the original primitive type. So in

the following program

public class InstanceOf {

public static void main(String[] args) {

doInt(5);

}

static void doInt(int i) { }

}

aspect IntToLong {

pointcut el(long l) :

execution(* doInt(..)) && args(l);

before(Object o) : el(o) {

System.out.println(o.getClass());

}

}

The pointcut will match and expose the integer argument, but it will expose it as an

Integer, not a Long.

APPENDIX A. ASPECTJ SYNTAX GUIDE 157

Primitive pointcuts

Method-related pointcuts

AspectJ provides two primitive pointcut designators designed to capture method call

and execution join points.

• call(MethodPattern)

• execution(MethodPattern)

Field-related pointcuts

AspectJ provides two primitive pointcut designators designed to capture field reference

and set join points:

• get(FieldPattern)

• set(FieldPattern)

All set join points are treated as having one argument, the value the field is being

set to, so at a set join point, that value can be accessed with an args pointcut. So an

aspect guarding a static integer variable x declared in type T might be written as

aspect GuardedX {

static final int MAX_CHANGE = 100;

before(int newval): set(static int T.x) && args(newval) {

if (Math.abs(newval - T.x) > MAX_CHANGE)

throw new RuntimeException();

}

}

Object creation-related pointcuts

AspectJ provides primitive pointcut designators designed to capture the initializer

execution join points of objects.

• call(ConstructorPattern)

• execution(ConstructorPattern)

• initialization(ConstructorPattern)

• preinitialization(ConstructorPattern)

APPENDIX A. ASPECTJ SYNTAX GUIDE 158

Class initialization-related pointcuts

AspectJ provides one primitive pointcut designator to pick out static initializer execu-

tion join points.

• staticinitialization(TypePattern)

Exception handler execution-related pointcuts

AspectJ provides one primitive pointcut designator to capture execution of exception

handlers:

• handler(TypePattern)

All handler join points are treated as having one argument, the value of the exception

being handled. That value can be accessed with an args pointcut. So an aspect used

to put FooException objects into some normal form before they are handled could be

written as

aspect NormalizeFooException {

before(FooException e): handler(FooException) && args(e) {

e.normalize();

}

}

Advice execution-related pointcuts

AspectJ provides one primitive pointcut designator to capture execution of advice

• adviceexecution()

This can be used, for example, to filter out any join point in the control flow of advice

from a particular aspect.

aspect TraceStuff {

pointcut myAdvice(): adviceexecution() && within(TraceStuff);

before(): call(* *(..)) && !cflow(myAdvice) {

// do something

}

}

APPENDIX A. ASPECTJ SYNTAX GUIDE 159

State-based pointcuts

Many concerns cut across the dynamic times when an object of a particular type is

executing, being operated on, or being passed around. AspectJ provides primitive

pointcuts that capture join points at these times. These pointcuts use the dynamic

types of their objects to pick out join points. They may also be used to expose the

objects used for discrimination.

• this(Type or Id)

• target(Type or Id)

The this pointcut picks out each join point where the currently executing object

(the object bound to this) is an instance of a particular type. The target pointcut

picks out each join point where the target object (the object on which a method is

called or a field is accessed) is an instance of a particular type. Note that target should

be understood to be the object the current join point is transfering control to. This

means that the target object is the same as the current object at a method execution

join point, for example, but may be different at a method call join point.

• args(Type or Id or "..", ...)

The args pointcut picks out each join point where the arguments are instances of some

types. Each element in the comma-separated list is one of four things. If it is a type

name, then the argument in that position must be an instance of that type. If it is

an identifier, then that identifier must be bound in the enclosing advice or pointcut

declaration, and so the argument in that position must be an instance of the type of the

identifier (or of any type if the identifier is typed to Object). If it is the "*" wildcard,

then any argument will match, and if it is the special wildcard "..", then any number of

arguments will match, just like in signature patterns. So the pointcut

args(int, .., String)

will pick out all join points where the first argument is an int and the last is a String.

Control flow-based pointcuts

Some concerns cut across the control flow of the program. The cflow and cflowbelow

primitive pointcut designators capture join points based on control flow.

• cflow(Pointcut)

• cflowbelow(Pointcut)

APPENDIX A. ASPECTJ SYNTAX GUIDE 160

The cflow pointcut picks out all join points that occur between entry and exit of

each join point P picked out by Pointcut, including P itself. Hence, it picks out the

join points in the control flow of the join points picked out by Pointcut.

The cflowbelow pointcut picks out all join points that occur between entry and

exit of each join point P picked out by Pointcut, but not including P itself. Hence,

it picks out the join points below the control flow of the join points picked out by

Pointcut.

Context exposure from control flows The cflow and cflowbelow pointcuts

may expose context state through enclosed this, target, and args pointcuts.

Anytime such state is accessed, it is accessed through the most recent control flow

that matched. So the "current arg" that would be printed by the following program is

zero, even though it is in many control flows.

class Test {

public static void main(String[] args) {

fact(5);

}

static int fact(int x) {

if (x == 0) {

System.err.println("bottoming out");

return 1;

}

else return x * fact(x - 1);

}

}

aspect A {

pointcut entry(int i): call(int fact(int)) && args(i);

pointcut writing(): call(void println(String)) && ! within(A);

before(int i): writing() && cflow(entry(i)) {

System.err.println("Current arg is " + i);

}

}

It is an error to expose such state through negated control flow pointcuts, such as

within !cflowbelow(P).

APPENDIX A. ASPECTJ SYNTAX GUIDE 161

Program text-based pointcuts

While many concerns cut across the runtime structure of the program, some must deal

with the lexical structure. AspectJ allows aspects to pick out join points based on

where their associated code is defined.

• within(TypePattern)

• withincode(MethodPattern)

• withincode(ConstructorPattern)

The within pointcut picks out each join point where the code executing is defined

in the declaration of one of the types in TypePattern. This includes the class initial-

ization, object initialization, and method and constructor execution join points for the

type, as well as any join points associated with the statements and expressions of the

type. It also includes any join points that are associated with code in a type’s nested

types, and that type’s default constructor, if there is one.

The withincode pointcuts picks out each join point where the code executing is

defined in the declaration of a particular method or constructor. This includes the

method or constructor execution join point as well as any join points associated with

the statements and expressions of the method or constructor. It also includes any join

points that are associated with code in a method or constructor’s local or anonymous

types.

Expression-based pointcuts

• if(BooleanExpression)

The if pointcut picks out join points based on a dynamic property. It’s syntax takes

an expression, which must evaluate to a boolean true or false. Within this expression,

the thisJoinPoint object is available. So one (extremely inefficient) way of picking

out all call join points would be to use the pointcut

if(thisJoinPoint.getKind().equals("call"))

Note that the order of evaluation for pointcut expression components at a join

point is undefined. Writing if pointcuts that have side-effects is considered bad style

and may also lead to potentially confusing or even changing behavior with regard to

when or if the test code will run.

APPENDIX A. ASPECTJ SYNTAX GUIDE 162

Signatures

One very important property of a join point is its signature, which is used by many of

AspectJ’s pointcut designators to select particular join points.

Methods

Join points associated with methods typically have method signatures, consisting of a

method name, parameter types, return type, the types of the declared (checked) excep-

tions, and some type that the method could be called on (below called the "qualifying

type").

At a method call join point, the signature is a method signature whose qualifying

type is the static type used to access the method. This means that the signature for the

join point created from the call ((Integer)i).toString() is different than that for

the call ((Object)i).toString(), even if i is the same variable.

At a method execution join point, the signature is a method signature whose

qualifying type is the declaring type of the method.

Fields

Join points associated with fields typically have field signatures, consisting of a field

name and a field type. A field reference join point has such a signature, and no

parameters. A field set join point has such a signature, but has a has a single parameter

whose type is the same as the field type.

Constructors

Join points associated with constructors typically have constructor signatures, con-

sisting of a parameter types, the types of the declared (checked) exceptions, and the

declaring type.

At a constructor call join point, the signature is the constructor signature of the

called constructor. At a constructor execution join point, the signature is the construc-

tor signature of the currently executing constructor.

At object initialization and pre-initialization join points, the signature is the con-

structor signature for the constructor that started this initialization: the first construc-

tor entered during this type’s initialization of this object.

APPENDIX A. ASPECTJ SYNTAX GUIDE 163

Others

At a handler execution join point, the signature is composed of the exception type that

the handler handles.

At an advice execution join point, the signature is composed of the aspect type, the

parameter types of the advice, the return type (void for all but around advice) and the

types of the declared (checked) exceptions.

Matching

The withincode, call, execution, get, and set primitive pointcut designators all

use signature patterns to determine the join points they describe. A signature pattern

is an abstract description of one or more join-point signatures. Signature patterns are

intended to match very closely the same kind of things one would write when declaring

individual members and constructors.

Method declarations in Java include method names, method parameters, return

types, modifiers like static or private, and throws clauses, while constructor declarations

omit the return type and replace the method name with the class name. The start of a

particular method declaration, in class Test, for example, might be

class C {

public final void foo() throws ArrayOutOfBoundsException { ... }

}

In AspectJ, method signature patterns have all these, but most elements can be

replaced by wildcards. So

call(public final void C.foo() throws ArrayOutOfBoundsException)

picks out call join points to that method, and the pointcut

call(public final void *.*() throws ArrayOutOfBoundsException)

picks out all call join points to methods, regardless of their name name or which

class they are defined on, so long as they take no arguments, return no value, are both

public and final, and are declared to throw ArrayOutOfBounds exceptions.

The defining type name, if not present, defaults to *, so another way of writing that

pointcut would be

call(public final void *() throws ArrayOutOfBoundsException)

Formal parameter lists can use the wildcard .. to indicate zero or more arguments,

so

APPENDIX A. ASPECTJ SYNTAX GUIDE 164

execution(void m(..))

picks out execution join points for voidmethods named m, of any number of arguments,

while

execution(void m(.., int))

picks out execution join points for void methods named m whose last parameter is of

type int.

The modifiers also form part of the signature pattern. If an AspectJ signature

pattern should match methods without a particular modifier, such as all non-public

methods, the appropriate modifier should be negated with the ! operator. So,

withincode(!public void foo())

picks out all join points associated with code in null non-public void methods named

foo, while

withincode(void foo())

picks out all join points associatedwith code in null voidmethods named foo, regardless

of access modifier.

Method names may contain the * wildcard, indicating any number of characters in

the method name. So

call(int *())

picks out all call join points to int methods regardless of name, but

call(int get*())

picks out all call join points to int methods where the method name starts with the

characters "get".

AspectJ uses the new keyword for constructor signature patterns rather than using

a particular class name. So the execution join points of private null constructor of a

class C defined to throw an ArithmeticException can be picked out with

execution(private C.new() throws ArithmeticException)

Matching based on the declaring type

The signature-matching pointcuts all specify a declaring type, but the meaning varies

slightly for each join point signature, in line with Java semantics.

When matching for pointcuts withincode, get, and set, the declaring type is the

class that contains the declaration.

APPENDIX A. ASPECTJ SYNTAX GUIDE 165

When matching method-call join points, the declaring type is the static type used

to access the method. A common mistake is to specify a declaring type for the call

pointcut that is a subtype of the originally-declaring type. For example, given the class

class Service implements Runnable {

public void run() { ... }

}

the following pointcut

call(void Service.run())

would fail to pick out the join point for the code

((Runnable) new Service()).run();

Specifying the originally-declaring type is correct, but would pick out any such call

(here, calls to the run() method of any Runnable). In this situation, consider instead

picking out the target type:

call(void run()) && target(Service)

When matching method-execution join points, if the execution pointcut method sig-

nature specifies a declaring type, the pointcut will only match methods declared in that

type, or methods that override methods declared in or inherited by that type. So the

pointcut

execution(public void Middle.*())

picks out all method executions for public methods returning void and having no

arguments that are either declared in, or inherited by, Middle, even if those methods

are overridden in a subclass of Middle. So the pointcut would pick out the method-

execution join point for Sub.m() in this code:

class Super {

protected void m() { ... }

}

class Middle extends Super {

}

class Sub extends Middle {

public void m() { ... }

}

APPENDIX A. ASPECTJ SYNTAX GUIDE 166

A.4 Advice

The following is an extract from the AspectJ programming guide [asp].

Advice defines pieces of aspect implementation that execute at well-defined points

in the execution of the program. Those points can be given either by named pointcuts

(like the ones you’ve seen above) or by anonymous pointcuts. Here is an example of

an advice on a named pointcut:

pointcut setter(Point p1, int newval): target(p1) && args(newval)

(call(void setX(int) ||

call(void setY(int)));

before(Point p1, int newval): setter(p1, newval) {

System.out.println("About to set something in " + p1 +

" to the new value " + newval);

}

And here is exactly the same example, but using an anonymous pointcut:

before(Point p1, int newval): target(p1) && args(newval)

(call(void setX(int)) ||

call(void setY(int))) {

System.out.println("About to set something in " + p1 +

" to the new value " + newval);

}

Here are examples of the different advice:

This before advice runs just before the join points picked out by the (anonymous)

pointcut:

before(Point p, int x): target(p) && args(x) && call(void setX(int)) {

if (!p.assertX(x)) return;

}

This after advice runs just after each join point picked out by the (anonymous) pointcut,

regardless of whether it returns normally or throws an exception:

after(Point p, int x): target(p) && args(x) && call(void setX(int)) {

if (!p.assertX(x)) throw new PostConditionViolation();

}

This after returning advice runs just after each join point picked out by the (anonymous)

pointcut, but only if it returns normally. The return value can be accessed, and is named

x here. After the advice runs, the return value is returned:

APPENDIX A. ASPECTJ SYNTAX GUIDE 167

after(Point p) returning(int x): target(p) && call(int getX()) {

System.out.println("Returning int value " + x + " for p = " + p);

}

This after throwing advice runs just after each join point picked out by the (anonymous)

pointcut, but only when it throws an exception of type Exception. Here the exception

value can be accessed with the name e. The advice re-raises the exception after it’s done:

after() throwing(Exception e): target(Point) && call(void setX(int)) {

System.out.println(e);

}

This around advice traps the execution of the join point; it runs instead of the join

point. The original action associated with the join point can be invoked through the

special proceed call:

void around(Point p, int x): target(p)

&& args(x)

&& call(void setX(int)) {

if (p.assertX(x)) proceed(p, x);

p.releaseResources();

}

Appendix B

A source-code and structural
approach

B.1 Join point as point in the structure of the program

The definition of join point in the Aspect-Oriented Software Development
book [FECA04] is about “well-defined places in the structure or the execution of
a program”, whereas the AspectJ definition talks exclusively about points in the
execution of a program1.

Chapters 3 and 4 have used an approach based on the AspectJ model. This
appendix presents another line of investigation which did not lead to experimental
results due to the lack of underlying tools. The tools that might have been used
(JTransformer2 [Rho03, Bar03] and LogicAJ3 [RK04, KRH, KR05]) were research
prototypes not mature enough for reliable experimentation at the time of writing.

JTransformer (see Section B.2.1) provides a low-level representation of the
source code and source-code transformations aimed at programmers familiar with
Prolog [Bra90]. LogicAJ (see Section B.2.2) provides a higher-level abstraction,
aimed at programmer familiar with Java and AspectJ.

1In fact, evenAspectJ has got pointcut descriptors tomatch join points according to the structure
of the program: within and withincode are pointcut descriptors utilised to refer to a subset of
the lexical scope of the program.

2http://roots.iai.uni-bonn.de/research/jtransformer/
3http://roots.iai.uni-bonn.de/research/logicaj/

168

http://roots.iai.uni-bonn.de/research/jtransformer/
http://roots.iai.uni-bonn.de/research/logicaj/

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 169

B.2 Tools

B.2.1 JTransformer

JTransformer is a transformation engine4 that uses Prolog in order to transform the
abstract syntax tree (AST) of Java units. Each node of the syntax tree is represented
by a Prolog fact. It is then possible to use Prolog predicates to add, remove and
modify the base of facts, that is, to change the AST.

Using JTransformer, the Java “for” construct would be represented by a fact of
the following form:

forLoopT(#id,#parent,#enclMethod,[#init_1,...]

#condition,[#step_1,...],#body)

where:

• #id would be a unique identifier (all nodes have an identifier),

• #parent would be the identifier of the parent node (usually the enclosing
block),

• #enclMethod would be the identifier of the enclosing method,

• [#init_1,...] would be the list of identifiers of the initialisation state-
ments,

• #condition would be the identifiers of the condition expression,

• [#step_1,...] would be the list of identifiers of the updating statements,
and

• #body would be the identifiers of the loop body.

Other Java constructs are represented similarly, for example with assignopT

(for assignment statements) or localDefT (for statements defining local variables).
The Java method shown in Listing B.1 is represented by the Prolog facts shown in
Listing B.2, which are sorted in the order of the AST in Listing B.3.

JTransformer could be used as a back-end for a tool that provides “fine-grained
genericity” [KR05], that is, genericity at any level of the syntax tree, including Java
loop constructs.

4JTransformer comes in the form of a plugin for Eclipse.

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 170

Listing B.1: Sample Java method.
public void test() {

int[] a = new int[10] ;
int[] b = new int[10] ;
for (int i = 0 ; i < 10 ; i++) {

a[i] = 0 ;
}
for (int i = 0 ; i < 10 ; i++) {

b[i] = 0 ;
}

}

B.2.2 LogicAJ

LogicAJ5 is an extension to the AspectJ language that provides genericity and
interference analysis. It is a source-to-source transformation engine that uses
JTransformer as a back-end. It is in fact a completely different implementation
that is not fully compatible with AspectJ but has different objectives, in particular
genericity through the use of logic meta-variables (LMV). “A meta-variable is a
variable that ranges over syntactic entities of the base language. [...] A logic variable
is a variable that can only be bound to values by the evaluation of predicates that take
the variable as an argument. [... A logic meta-variable ...] is both, a logic variable
and a meta-variable” [KR05].

Listing B.4 [Rho04] shows an example application 6 of LogicAJ. The variables
whose names start with a question mark are the LMVs (the double question mark
is a variation for LMVs matching several parameters). Although the syntax looks
similar to that of AspectJ, binding the LMVs in the pointcut follows the mode of
reasoning of Prolog (i.e. first order predicate logic). In this example, the Prolog
goal (or pointcut in LogicAJ’s terminology) will be satisfied if and only if there is a
matching combination of ?Class, ??args and ?mock, where there exists a call to
the constructor of ?Class taking ??args as arguments, there exists a string ?mock
made of the concatenation of the name of the class ?Class and "Mock", and there
exists a class named by the string value of ?mock.

Unfortunately, at the time of writing, LogicAJ is still in development, and only
partially working alpha versions have been released.

5LogicAJ comes in the form of a plugin for Eclipse.
6This particular example has been taken from the LogicAJ example files.

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 171

Listing B.2: JTransformer/Prolog facts for the method in Listing B.1.
assignT(15646, 15645, 15448, 15647, 15648).
assignT(15660, 15659, 15448, 15661, 15662).
blockT(15628, 15448, 15448, [15629, 15630, 15631, 15632]).
blockT(15640, 15631, 15448, [15645]).
blockT(15654, 15632, 15448, [15659]).
execT(15645, 15640, 15448, 15646).
execT(15659, 15654, 15448, 15660).
forLoopT(15631, 15628, 15448, [15637], 15638, [15639], 15640).
forLoopT(15632, 15628, 15448, [15651], 15652, [15653], 15654).
identT(15642, 15638, 15448, i, 15637).
identT(15644, 15639, 15448, i, 15637).
identT(15649, 15647, 15448, i, 15637).
identT(15650, 15647, 15448, a, 15629).
identT(15656, 15652, 15448, i, 15651).
identT(15658, 15653, 15448, i, 15651).
identT(15663, 15661, 15448, i, 15651).
identT(15664, 15661, 15448, b, 15630).
indexedT(15647, 15646, 15448, 15649, 15650).
indexedT(15661, 15660, 15448, 15663, 15664).
literalT(15634, 15633, 15448, type(basic, int, 0), 10).
literalT(15636, 15635, 15448, type(basic, int, 0), 10).
literalT(15641, 15637, 15448, type(basic, int, 0), 0).
literalT(15643, 15638, 15448, type(basic, int, 0), 10).
literalT(15648, 15646, 15448, type(basic, int, 0), 0).
literalT(15655, 15651, 15448, type(basic, int, 0), 0).
literalT(15657, 15652, 15448, type(basic, int, 0), 10).
literalT(15662, 15660, 15448, type(basic, int, 0), 0).
localDefT(15629, 15628, 15448, type(basic, int, 1), a, 15633).
localDefT(15630, 15628, 15448, type(basic, int, 1), b, 15635).
localDefT(15637, 15631, 15448, type(basic,int,0), i, 15641).
localDefT(15651, 15632, 15448, type(basic,int,0), i, 15655).
methodDefT(15448, 15431, test, [], type(basic, void, 0),

type(basic, void, 0), [], 15628).
modifierT(15448, public).
newArrayT(15633, 15629, 15448, [15634], [], type(basic,int,1)).
newArrayT(15635, 15630, 15448, [15636], [], type(basic,int,1)).
operationT(15638, 15631, 15448, [15642, 15643], <, 0).
operationT(15639, 15631, 15448, [15644], ++, 1).
operationT(15652, 15632, 15448, [15656, 15657], <, 0).
operationT(15653, 15632, 15448, [15658], ++, 1).

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 172

Listing B.3: JTransformer/Prolog facts for the method in Listing B.1 (sorted ac-
cording to the syntax tree).

methodDefT(15448, 15431, test, [], type(basic, void, 0),
type(basic, void, 0), [], 15628)

/modifierT(15448, public)/
[]
[]
blockT(15628, 15448, 15448, [15629, 15630, 15631, 15632])

[localDefT(15629, 15628, 15448, type(basic, int, 1), a, 15633)
newArrayT(15633, 15629, 15448, [15634], [], type(basic,int,1))

[literalT(15634, 15633, 15448, type(basic, int, 0), 10)]
[]

localDefT(15630, 15628, 15448, type(basic, int, 1), b, 15635)
newArrayT(15635, 15630, 15448, [15636], [], type(basic,int,1))

[literalT(15636, 15635, 15448, type(basic, int, 0), 10)]
[]

forLoopT(15631, 15628, 15448, [15637], 15638, [15639], 15640)
[localDefT(15637, 15631, 15448, type(basic,int,0), i, 15641)

literalT(15641, 15637, 15448, type(basic, int, 0), 0)]
operationT(15638, 15631, 15448, [15642, 15643], <, 0)

[identT(15642, 15638, 15448, i, 15637)
literalT(15643, 15638, 15448, type(basic, int, 0), 10)

]
[operationT(15639, 15631, 15448, [15644], ++, 1)

[identT(15644, 15639, 15448, i, 15637)]
]
blockT(15640, 15631, 15448, [15645])

[execT(15645, 15640, 15448, 15646)
assignT(15646, 15645, 15448, 15647, 15648)

indexedT(15647, 15646, 15448, 15649, 15650)
identT(15649, 15647, 15448, i, 15637)
identT(15650, 15647, 15448, a, 15629)

literalT(15648, 15646, 15448, type(basic, int, 0), 0)
]

forLoopT(15632, 15628, 15448, [15651], 15652, [15653], 15654)
[localDefT(15651, 15632, 15448, type(basic,int,0), i, 15655)

literalT(15655, 15651, 15448, type(basic, int, 0), 0)
]
operationT(15652, 15632, 15448, [15656, 15657], <, 0)

[identT(15656, 15652, 15448, i, 15651)
literalT(15657, 15652, 15448, type(basic, int, 0), 10)

]
[operationT(15653, 15632, 15448, [15658], ++, 1)

[identT(15658, 15653, 15448, i, 15651)]
]
blockT(15654, 15632, 15448, [15659])

[execT(15659, 15654, 15448, 15660)
assignT(15660, 15659, 15448, 15661, 15662)

indexedT(15661, 15660, 15448, 15663, 15664)
identT(15663, 15661, 15448, i, 15651)
identT(15664, 15661, 15448, b, 15630)

literalT(15662, 15660, 15448, type(basic, int, 0), 0)
]

]

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 173

Listing B.4: Mock objects using LogicAJ.
public aspect MockAspect {

Object around(?mock, ??args):
// Intercept constructor invocations.

// Bind ?class to the name of the instantiated class

// and ?args to the argument list of the invocation

call(?Class.new(..)) && args(??args) &&

// Check if a class with name ?class+"Mock" exists

concat(?Class, "Mock", ?mock) && class(?mock)
{

// return instance of mock class

// includes weave time check for constructor existence

return new ?mock(??args);
}

}

B.3 Loop fusion

A typical loop optimisation that could not be performed using anAspectJ join point
model (because AspectJ join points are points in the execution of the program) is
the fusion of loops. The AspectJ model does not make it possible to combine two
“proceed()” statements corresponding to two different join points (it would not
make sense in the AspectJ advice model).

This section sketches an example application of JTransformer that could be used
as a basis for an aspect-oriented system permitting aspects to perform loop fusion
on Java-code (this has otherwise been done in Lisp [KLM+97]).

The two main facets of this problem are the implementation of the transfor-
mations and the abstraction that needs to be provided to enable programmers of
aspects to utilise this transformation.

Listing B.5 shows a Prolog rule that could implement the merging of two loops.
This rule, mergeForLoops(ForLoopID1, ForLoopID2, NewLoop), is designed in
three steps which consists of:

1. matching the two for loops and their components (initialisers, conditions,
updating statements and body);

2. checking that the iteration spaces of the two loops are equivalent, via the
initialisers, the conditions and the updating statements; and

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 174

3. merging the loop bodies into a new block, and creating a new loop. (This is a
simplified version that does not take into account the proper insertion of the
new loop or the deletion of the merged loops.)

Listing B.5: Merging two loops using JTransformer.
% This goal represents the merging of loops ForLoopID1 and ForLoopID2

% to form a loop with identifier NewLoop.

mergeForLoops(ForLoopID1, ForLoopID2, NewLoop) :-
% The following 2 rules match two loops with the same parent node.

forLoopT(ForLoopID1, _Parent,_Method, Init1, Cond1, Update1, Body1),
forLoopT(ForLoopID2, _Parent,_Method, Init2, Cond2, Update2, Body2),

% The following rule check that the iteration spaces of the

% loops are equivalent.

equiv([Init1, Cond1, Update1], [Init2, Cond2, Update2]),
!,

% Creates a new identifier (for a block)

new_id(NewBlock), !,
% Creates a new identifier (for a loop)

new_id(NewLoop), !,
% The following rule adds a new fact to the prolog base. This

% represents a block merging the two bodies of the original loops.

assert(blockT(NewBlock, NewLoop, _EnclMethod, [Body1, Body2])),

% The following rule adds a new fact to the prolog base. This

% represents a loop with the original iteration space and the

% merged body newly created.

assert(forLoopT(NewLoop, _Parent, _EnclMethod, Init1,
Cond1, Update1, NewBlock)).

The most laborious task regarding the implementation is the writing of the
rules that check the equivalence of two iteration spaces (equiv([Init1, Cond1,

Update1], [Init2, Cond2, Update2])). This example is incomplete, but the
difficulty lies in implementing a mechanism capable of checking that (int i=0 ;

i<10; i++) in the two loops in Listing B.1 have the same semantics, based on the
AST. Having a mechanism flexible enough that would work, for example, if the
second loop was using another variable name, if the variable was declared outside
the loop, or if the loop was using the while construct is a non-trivial task. This
would require semantic analyses using the AST as a starting point. This wouldmore
or less consist of writing a Java compiler (or the equivalent of the Soot framework),
in Prolog.

APPENDIX B. A SOURCE-CODE AND STRUCTURAL APPROACH 175

Moreover, the abstraction to use for such transformations would be difficult to
integrate in the AspectJ advice model. In AspectJ, the advice is executed when the
join point is encountered. For merging loops, this is too late, since, by definition,
merging two loops requires anticipation of the occurrence of a second loop after
the first one. Using an AspectJ advice to do something before, after, or around the
occurrence of a given loop is of no use in this respect. The LogicAJ introduction
model, which has the potential to perform complex operations on the whole AST,
could perhaps help overcome this problem.

B.4 Aspects for refactoring

Another possible use of JTransformer and LogicAJ would consist of writing aspects
that perform the refactorings presented in [HG04] and in Section 3.2. Indeed, if
LogicAJ was capable of matching loops, its introduction mechanism should make
it possible to create new classes based on the content of these loops. Therefore, it
should be possible towrite aspects, not only for parallelising, but also for refactoring
double loop nests into their object-oriented counterparts (as is done manually in
Section 3.2), for example. A possible design for this solution could consist of
providing LogicAJ with the means of using its introduction mechanism to let the
aspect programmer explicitly handle closures at certain join points.

This approach could also circumvent the performance problem due to the cre-
ation of many instances of Runnable objects exactly at the loop join point when
parallelising using LOOPSAJ, as shown in Chapter 5.

A prototype implementation of semi-automated loop refactorings has been
written using an early version of JTransformer in the context of this thesis. How-
ever, it did not fully address the problem of recognising semanticaly equivalent
codes written differently (for example, while- and for-loops), and LogicAJ was
not available at the time. Without a higher-level abstraction, it is hardly realistic to
imagine software engineers used to Java writing Prolog-based transformations of
the AST to improve the design of their applications.

Appendix C

Listings

C.1 Object-oriented loops

C.1.1 RectangleLoopA

Listing C.1: Class RectangleLoopA and interface Runnable2DLoopBody.
/**

* This class represents a loop body that has two parameters

* (typically i and j).

* It is meant to be used in conjunction with RectangleLoopA.

*/

public interface Runnable2DLoopBody {

/**

* Classes implementing this interface have to implement

* this method ’run(int, int)’ that will be representing

* the body of a double nested loop.

* Programmers should pay attention to the order of the

* indexes (when used with RectangleLoopA, for example)

* for a better use of the cache lines.

*

* @param i Outer loop index when using RectangleLoopA.

* @param j Inner loop index when using RectangleLoopA.

*/

void run(int i, int j);

}

/**

* This class is used for providing a model of double nested loops.

* The body of the loop must be encapsulated in the run(int, int)

* method of an instance of Runnable2DLoopBody. The run() method of

* this class will iterate through the loop body over a rectangle

* whose boundaries are given as arguments to the constructor.

*/

176

APPENDIX C. LISTINGS 177

public class RectangleLoopA implements Runnable {

final protected Runnable2DLoopBody loopBody;

final private int minI;

final private int maxI;

final private int minJ;

final private int maxJ;

/**

* Constructs the loop.

* @param loopBody Instance of Runnable2DLoopBody that represents

* the body of the loop to be executed.

* @param minI Minimal value for the outer loop index (inclusive).

* @param maxI Maximal value for the outer loop index (inclusive).

* @param minJ Minimal value for the inner loop index (inclusive).

* @param maxJ Maximal value for the inner loop index (inclusive).

*/

public RectangleLoopA(

Runnable2DLoopBody loopBody,

int minI,

int maxI,

int minJ,

int maxJ) {

this.loopBody = loopBody ;

this.minI = minI;

this.maxI = maxI;

this.minJ = minJ;

this.maxJ = maxJ;

}

/**

* This method does the iterations through the loop body according

* to the values given in the constructor.

*/

public void run() {

for (int i = minI; i <= maxI; i++)

for (int j = minJ; j <= maxJ; j++)

loopBody.run(i, j);

}

}

Listing C.2: Aspect for implementing multi-threading in RectangleLoopA.
public privileged aspect MultiThreads {

/* Initialise the number of threads on which to split the loop */

public static int NUM_PROC ;

public MultiThreads () {

NUM_PROC = Integer.parseInt(System.getProperty("numproc","1")) ;

}

APPENDIX C. LISTINGS 178

/**

* This class is meant to replace an instance of RectangleLoopA and run the

* loop it represents on several threads.

*/

class MTRectangleLoopA extends RectangleLoopA {

/**

* Array of "smaller" RectangleLoopAs.

*/

private final Runnable[] subLoops ;

/**

* Splits the load on "NUM_PROC" RectangleLoops.

*

* @see uk.ac.man.cs.bruno.loops.RectangleLoopA

* @param loopBody

* Instance of Runnable2DLoopBody that represents the body of

* the loop to be executed.

* @param minI Minimal value for the outer loop index (inclusive).

* @param maxI Maximal value for the outer loop index (inclusive).

* @param minJ Minimal value for the inner loop index (inclusive).

* @param maxJ Maximal value for the inner loop index (inclusive).

*/

public MTRectangleLoopA (

Runnable2DLoopBody loopBody,

int minI,

int maxI,

int minJ,

int maxJ) {

super(loopBody, minI, maxI, minJ, maxJ) ;

subLoops = new Runnable [NUM_PROC] ;

int width =

(int) Math.ceil(

((double) (maxI - minI)) / (double) NUM_PROC);

for (int k=0; k<NUM_PROC; k++) {

int min = minI + k*width ;

int max = minI + (k + 1) * width - 1;

if (max > maxI)

max = maxI;

subLoops[k] = new RectangleLoopA (loopBody, min, max, minJ, maxJ) ;

}

}

/**

* Sends all the subloops to the thread pool.

*/

public void run () {

threadPool.run(subLoops) ;

}

}

/**

This around piece of advice catches creations of instances of RectangleLoopA.

It transparently replaces the instance of RectangleLoopA by the equivalent

instance of MTRectangleLoopA, as defined above.

APPENDIX C. LISTINGS 179

*/

RectangleLoopA around (Runnable2DLoopBody loopBody,

int minI,

int maxI,

int minJ,

int maxJ):

call (RectangleLoopA.new(..)) && !within(MTRectangleLoopA) &&

args (loopBody, minI, maxI, minJ, maxJ) {

return new MTRectangleLoopA (loopBody, minI, maxI, minJ, maxJ) ;

}

}

C.1.2 RectangleLoopB

Listing C.3: Class RectangleLoopB.
/**

* This class is used for providing a model of double nested loops.

* The programmer must extend this class and implement the

* loopBody (int, int) method, which will represent the loop body.

* The run() method of this class will iterate through the loop body

* over a rectangle whose boundaries are given as arguments to the

* constructor.

*/

public abstract class RectangleLoopB implements Runnable {

final public int minI;

final public int maxI;

final public int minJ;

final public int maxJ;

/**

* Constructs the loop.

* @param minI Minimal value for the outer loop index (inclusive).

* @param maxI Maximal value for the outer loop index (inclusive).

* @param minJ Minimal value for the inner loop index (inclusive).

* @param maxJ Maximal value for the inner loop index (inclusive).

*/

public RectangleLoopB(

int minI,

int maxI,

int minJ,

int maxJ) {

this.minI = minI;

this.maxI = maxI;

this.minJ = minJ;

this.maxJ = maxJ;

}

/**

* This method has to be overridden for implementing the body of a

* double nested loop.

APPENDIX C. LISTINGS 180

* @param i Outer loop index.

* @param j Inner loop index.

*/

public abstract void loopBody (int i, int j) ;

/**

* This method does the iterations through the loop body according

* to the values given in the constructor.

*/

public final void run () {

for (int i=minI; i<=maxI; i++)

for (int j=minJ; j<=maxJ; j++)

loopBody (i, j) ;

}

}

C.1.3 RectangleLoopC

Listing C.4: Class RectangleLoopC.
/**

* This class is used for providing a model of double nested loops.

* The programmer must extend this class and implement the

* loopDoJRange (int, int) method, which will represent the loop body.

*

* The run() method of this class will iterate through

* loopDoJRange (int i, int minJ, int maxJ) according to the boundary

* values of i given in the constructor. This representation does not

* actually implement the inner nested loop. The programmer is expected

* to do it in loopDoJRange (@see #loopDoJRange (int, int, int)).

*/

public abstract class RectangleLoopC implements Runnable {

final private int minI;

final private int maxI;

final private int minJ;

final private int maxJ;

/**

* Constructs the loop.

* @param minI Minimal value for the outer loop index (inclusive).

* @param maxI Maximal value for the outer loop index (inclusive).

* @param minJ Minimal value for the inner loop index (inclusive).

* @param maxJ Maximal value for the inner loop index (inclusive).

*/

public RectangleLoopC(

int minI,

int maxI,

int minJ,

int maxJ) {

this.minI = minI;

APPENDIX C. LISTINGS 181

this.maxI = maxI;

this.minJ = minJ;

this.maxJ = maxJ;

}

/**

* The programmer is expected to implement the inner nested loop and

* the loop body in this method.

* The reason why the inner loop has not been hard coded in that model

* is to avoid a method call at the most inner side of the loop, so

* that maybe the JVM would perform a better loop optimisation (loop

* unrolling, ...).

*

* Thus, <code>loopDoJRange (int i, int minJ, int maxJ)</code> should

* contain something similar to the following:

* <pre>

* public void loopDoJRange (int i, int minJ, int maxJ) {

* for (int j=minJ; j <= maxJ; j++) {

* // implements the loop body depending on the values of i and j.

* }

* }

* </pre>

*

* @param i Current value of i, as called by loopDoIRange.

* @param minJ If called via loopDoIRange, will be minJ given to the

* constructor.

* @param maxJ If called via loopDoIRange, will be maxJ given to the

* constructor.

*/

public abstract void loopDoJRange (int i, int minJ, int maxJ) ;

/**

* This method will iterate through loopDoJRange for values of i

* from minI to maxI, with values of minJ and maxJ as given in the

* constructor.

*

* @param minI Minimal value for the outer loop index (inclusive).

* @param maxI Maximal value for the outer loop index (inclusive).

*/

public void loopDoIRange (int minI, int maxI) {

for (int i=minI; i<=maxI; i++)

loopDoJRange(i, minJ, maxJ) ;

}

/**

* This method does the iterations through the loop body according

* to the values given in the constructor.

*/

public final void run () {

loopDoIRange (minI, maxI) ;

}

}

Bibliography

[ACH+04a] PAVEL AVGUSTINOV, ASKE SIMON CHRISTENSEN, LAURIE HEN-
DREN, SASCHA KUZINS, JENNIFER LHOTÁK, ONDREJ LHOTÁK,
OEGE DE MOOR, DAMIEN SERENI, GANESH SITTAMPALAM, AND
JULIAN TIBBLE. abc: An extensible AspectJ compiler. Technical
report, The abc group, aspectbench.org, September 2004.

[ACH+04b] PAVEL AVGUSTINOV, ASKE SIMON CHRISTENSEN, LAURIE HEN-
DREN, SASCHA KUZINS, JENNIFER LHOTÁK, ONDREJ LHOTÁK,
OEGE DE MOOR, DAMIEN SERENI, GANESH SITTAMPALAM, AND
JULIANTIBBLE. OptimisingAspectJ. Technical report, The abc group,
aspectbench.org, November 2004.

[ACH+05a] PAVEL AVGUSTINOV, ASKE SIMON CHRISTENSEN, LAURIE HEN-
DREN, SASCHA KUZINS, JENNIFER LHOTÁK, ONDREJ LHOTÁK,
OEGE DE MOOR, DAMIEN SERENI, GANESH SITTAMPALAM, AND
JULIAN TIBBLE. Optimising AspectJ. In PLDI ’05: Proceedings of
the 2005 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 117–128, New York, NY, USA, 2005.
ACM Press.

[ACH+05b] PAVEL AVGUSTINOV, ASKE SIMON CHRISTENSEN, LAURIE HEN-
DREN, SASCHA KUZINS, JENNIFER JENNIFER LHOTÁK, ONDREJ

LHOTÁK, OEGE DE MOOR, DAMIEN SERENI, GANESH SITTAM-
PALAM, AND JULIANTIBBLE. abc: an extensibleAspectJ compiler. In
AOSD ’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pages 87–98, New York, NY, USA,
2005. ACM Press.

182

BIBLIOGRAPHY 183

[Ald05] JONATHAN ALDRICH. Open modules: Modular reasoning about
advice. In Proceedings of the 18th European Conference on Object-
Oriented Programming (ECOOP’05), Lecture Notes in Computer
Science, volume 3586, pages 144–168, 2005.

[AM05] TOMOYUKI AOTANI ANDHIDEHIKOMASUHARA. Compiling con-
ditional pointcuts for user-level semantic pointcuts. In Proceedings
of the 4th workshop on Software-Engineering Properties of Languages
and Aspect Technologies (SPLAT 2005), March 2005.

[AOS] AOSD STEERING COMMITTEE. AOSDweb site. http://www.aosd.
net/.

[Art00] JOHN K. ARTHUR. Java as an environment for scientific computing.
Lecture Notes in Computational Science and Engineering 10, Advances
in Software Tools for Scientific Computing, pages 179–196, 2000.

[asp] AspectJ web site. http://www.eclipse.org/aspectj/.

[ASU85] ALFREDV. AHO, RAVI SETHI, AND JEFFREYD.ULLMAN. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1985.

[BA01] LODEWIJK BERGMANS AND MEHMET AKSITS. Composing cross-
cutting concerns using composition filters. Communications of the
ACM, 44(10):51–57, 2001.

[Bar03] UWE BARDEY. Abhängigkeitsanalyse von Softwaretransformatio-
nen. Diploma thesis, CS Dept. III, University of Bonn, Germany,
Feb 2003.

[BB04] GILAD BRACHA AND JOSHUA BLOCH. JSR 201: Extending the
JavaTM programming language with enumerations, autoboxing, en-
hanced for loops and static import, September 2004. http://jcp.
org/en/jsr/detail?id=201.

[BBKW98] AART J. C. BIK, PETER J. H. BRINKHAUS, PETER M. W. KNIJNEN-
BURG, AND HARRY A. G. WIJSHOFF. The automatic generation
of sparse primitives. ACM Transactions on Mathematical Software
(TOMS), 24(2):190–225, 1998.

http://www.aosd.net/
http://www.aosd.net/
http://www.eclipse.org/aspectj/
http://jcp.org/en/jsr/detail?id=201
http://jcp.org/en/jsr/detail?id=201

BIBLIOGRAPHY 184

[BCF+98] MARK BAKER, BRYAN CARPENTER, GEOFFREY FOX, SUNG HOON

KO, ANDXINYING LI. mpiJava: A Java interface toMPI. In First UK
Workshop on Java forHigh PerformanceNetworkComputing, Europar
’98, September 1998.

[BG97] AART J.C. BIK AND DENNIS B. GANNON. javab – a prototype
bytecode parallelization tool. Technical Report TR489, Computer
Science Department, Indiana University, 1997.

[BK00] J. M. BULL ANDM. E. KAMBITES. JOMP – anOpenMP-like interface
for Java. In Proceedings of the ACM 2000 conference on Java Grande,
pages 44–53. ACM Press, 2000.

[BMPP01] RONALD F. BOISVERT, JOSÉMOREIRA, MICHAEL PHILIPPSEN, AND
ROLDAN POZO. Java and numerical computing. Computing in Sci-
ence & Engineering [see also IEEE Computational Science and Engi-
neering], 3(2):18–24, 2001.

[Bod05] RON BODKIN. Performance monitoring with AspectJ, part 1. In
IBM developerWorks AOP@Work series. September 2005.

[Bra90] IVAN BRATKO. Prolog Programming for Artificial Intelligence.
Addison-Wesley, 2nd edition, 1990.

[BSPF01] J. M. BULL, L. A. SMITH, L. POTTAGE, AND R. FREEMAN. Bench-
marking Java against C and fortran for scientific applications. In
Proceedings of ACM Java Grande/ISCOPE Conference, pages 97–
105, 2001.

[BSW+00] J. BULL, L. SMITH, M. WESTHEAD, D. HENTY, AND R. DAVEY.
Benchmarking Java Grande applications. In Proceedings of the Second
International Conference on The Practical Applications of Java, pages
63–73, 2000.

[BVG97] AART J. C. BIK, JUAN E. VILLACIS, ANDDENNIS B. GANNON. javar:
A prototype Java restructuring compiler. Concurrency: Practice and
Experience, 9(11):1181–1191, 1997.

[CCFL98] BRYAN CARPENTER, YUH-JYE CHANG, GEOFFREY FOX, AND XI-
AOMING LI. Java as a language for scientific parallel programming.

BIBLIOGRAPHY 185

Lecture Notes in Computer Science volume 1366, Languages andCom-
pilers for Parallel Computing, pages 340–354, 1998. Proceedings of
the 10th InternationalWorkshop, LCPC’97Minneapolis,Minnesota,
USA.

[CCHW05] ADRIAN COLYER, ANDY CLEMENT, GEORGE HARLEY, AND

MATTHEWWEBSTER. Eclipse AspectJ: Aspect-Oriented Programming
with AspectJ and the Eclipse AspectJ Development Tools. Pearson Ed-
ucation, 2005.

[CDK+01] ROHIT CHANDRA, LEONARDO DAGUM, DAVE KOHR, DRORMAY-
DAN, JEFF MCDONALD, AND RAMESH MENON. Parallel Program-
ming in OpenMP. Morgan Kaufmann Publishers, 2001.

[CGJ+00] BRYAN CARPENTER, VLADIMIR GETOV, GLENN JUDD, ANTHONY

SKJELLUM, AND GEOFFREY FOX. MPJ: MPI-like message passing
for Java. Concurrency: Practice and Experience, 12(11):1019–1038,
2000.

[CKF+01] YVONNE COADY, GREGOR KICZALES, MIKE FEELEY, NORM

HUTCHINSON, AND JOON SUAN ONG. Structuring operating sys-
tem aspects: using AOP to improve OS structure modularity. Com-
munications of the ACM, 44(10):79–82, 2001.

[Cli05] CURTIS CLIFTON. A design discipline and language features for mod-
ular reasoning in aspect-oriented programs. PhD thesis, Department
of Computer Science, Iowa State University, 2005.

[CRP01] DENIS CAROMEL, JOHN REYNDERS, AND MICHAEL PHILIPPSEN,
editors. Proceedings of the 2001 joint ACM-ISCOPE conference on
Java Grande. ACM Press, 2001.

[CWH00] MARY CAMPIONE, KATHY WALRATH, AND ALISON HUML. The
Java(TM)Tutorial: A ShortCourse on the Basics, chapter 8—Threads:
Doing Two orMore Tasks AtOnce. Addison-Wesley, http://java.
sun.com/docs/books/tutorial/essential/threads/, 3rd edi-
tion, 2000.

[DBMS] JACKDONGARRA, JIMBUNCH, CLEVEMOLER, ANDPETE STEWART.
LINPACK web site. http://www.netlib.org/linpack/.

http://java.sun.com/docs/books/tutorial/essential/threads/
http://java.sun.com/docs/books/tutorial/essential/threads/
http://www.netlib.org/linpack/

BIBLIOGRAPHY 186

[DHS+03] JONATHAN DAVIES, NICK HUISMANS, RORY SLANEY, SIAN WHIT-
ING, MATTHEW WEBSTER, AND ROBERT BERRY. Aspect oriented
profiler. InPractitionerReports, AOSD’2003 conference, Boston. 2003.

[Dij76] EDSGER W. DIJKSTRA. A Discipline of Programming. Prentice-Hall,
1976.

[DT04] RÉMI DOUENCE AND LUC TEBOUL. A pointcut language for
control-flow. In Proceedings of the 3rd International Conference on
Generative Programming and Component Engineering (GPCE’04),
pages 95–114, 2004.

[EAK+01] TZILLAELRAD, MEHMETAKSITS, GREGORKICZALES, KARLLIEBER-
HERR, AND HAROLD OSSHER. Discussing aspects of AOP. Com-
munications of the ACM, 44(10):33–38, 2001.

[EFB01] TZILLA ELRAD, ROBERT E. FILMAN, AND ATEF BADER. Aspect-
oriented programming: Introduction. Communications of the ACM,
44(10):29–32, 2001.

[EPC] EPCC. Java Grande at EPCC. http://www.epcc.ed.ac.uk/

javagrande/.

[FECA04] ROBERT E. FILMAN, TZILLA ELRAD, SIOBHÁN CLARKE, AND

MEHMET AKŞIT, editors. Aspect-Oriented Software Development.
Addison-Wesley, Boston, 2004.

[FF00] R. FILMAN AND D. FRIEDMAN. Aspect-oriented programming is
quantification and obliviousness. In Workshop on Advanced Separa-
tion of Concerns, OOPSLA 2000, 2000.

[FSS99] GEOFFREY FOX, KLAUS SCHAUSER, ANDMARC SNIR, editors. Pro-
ceedings of the ACM 1999 conference on Java Grande. ACM Press,
1999.

[GBNT01] JEFF GRAY, TED BAPTY, SANDEEPNEEMA, AND JAMES TUCK. Han-
dling crosscutting constraints in domain-specific modeling. Com-
munications of the ACM, 44(10):87–93, 2001.

http://www.epcc.ed.ac.uk/javagrande/
http://www.epcc.ed.ac.uk/javagrande/

BIBLIOGRAPHY 187

[GC00] K. JOHNGOUGH ANDDIANECORNEY. Evaluating the Java Virtual
Machine as a target for languages other than Java. Lecture Notes
in Computer Science 1897, Modular Programming Languages, pages
278–290, 2000.

[gcj] GCJHome page. Free Software Foundation, Inc., http://www.gnu.
org/software/gcc/java/.

[GJSB05] JAMES GOSLING, BILL JOY, GUY STEELE, AND GILAD BRACHA.
Java(TM) Language Specification, Third Edition. Addison-Wesley,
http://java.sun.com/docs/books/jls/, 2005.

[GM00] DENNISGANNON AND PIYUSHMEHROTRA, editors. Proceedings of
the ACM 2000 conference on Java Grande. ACM Press, 2000.

[HG04] BRUNOHARBULOT AND JOHNR.GURD. Using AspectJ to separate
concerns in parallel scientific Java code. In Proceedings of the 3rd
international conference on Aspect-Oriented Software Development,
pages 122–131. ACM Press, 2004.

[HG05] BRUNO HARBULOT AND JOHN R. GURD. A join point for loops
in AspectJ. In Proceedings of the 4th workshop on Foundations of
Aspect-Oriented Languages (FOAL 2005), pages 11–20. TR #05-05,
Department of Computer Science, Iowa State University, March
2005.

[HG06] BRUNOHARBULOT AND JOHN R. GURD. A join point for loops in
AspectJ. In Proceedings of the 5th international conference on Aspect-
Oriented Software Development (to appear). ACM Press, 2006.

[HH04] ERIK HILSDALE AND JIM HUGUNIN. Advice weaving in AspectJ.
In Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 26–35. ACM Press, 2004.

[Hot] Java HotSpot Technology. Sun Microsystems, Inc., http://java.
sun.com/products/hotspot/.

[HSDH04] MATTHIAS HAUSWIRTH, PETER F. SWEENEY, AMER DIWAN, AND
MICHAEL HIND. Vertical profiling: understanding the behavior of
object-oriented applications. InOOPSLA ’04: Proceedings of the 19th

http://www.gnu.org/software/gcc/java/
http://www.gnu.org/software/gcc/java/
http://java.sun.com/docs/books/jls/
http://java.sun.com/products/hotspot/
http://java.sun.com/products/hotspot/

BIBLIOGRAPHY 188

annual ACMSIGPLANConference onObject-oriented programming,
systems, languages, and applications, pages 251–269, New York, NY,
USA, 2004. ACM Press.

[IEE00] IEEE. IEEE Recommended practice for architectural description of
software-intensive systems. 2000. IEEE Std 1471.

[ILG+97] JOHN IRWIN, JEAN-MARC LOINGTIER, JOHN R. GILBERT, GREGOR

KICZALES, JOHN LAMPING, ANURAGMENDHEKAR, AND TATIANA
SHPEISMAN. Aspect-oriented programming of sparsematrix code. In
International Symposium on Computing in Object-Oriented Parallel
Environments (ISCOPE), pages 249–256, 1997.

[JGF] JGF. JavaGrande Forum’s website. http://www.javagrande.org/.

[Jor03] JOHN JORGENSEN. Improving the precision and correctness of ex-
ception analysis in Soot. Technical report, Sable Group, McGill Uni-
versity, Montreal, Canada, September 2003.

[KHH+01a] GREGORKICZALES, ERIKHILSDALE, JIMHUGUNIN, MIKKERSTEN,
JEFFREY PALM, AND WILLIAM GRISWOLD. Getting started with
AspectJ. Communications of the ACM, 44(10):59–65, 2001.

[KHH+01b] GREGORKICZALES, ERIKHILSDALE, JIMHUGUNIN, MIKKERSTEN,
JEFFREY PALM, AND WILLIAM G. GRISWOLD. An overview of As-
pectJ. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP’01), Lecture Notes in Computer
Science, pages 327–353. Springer-Verlag, 2001.

[Kic03] GREGORKICZALES. Keynote speech at the 2nd aspect-oriented soft-
ware development conference (AOSD’2003), 2003. http://www.

cs.ubc.ca/~gregor/papers/kiczales-aosd-2003.ppt.

[KLM+97] GREGOR KICZALES, JOHN LAMPING, ANURAG MENHDHEKAR,
CHRISMAEDA, JEAN-MARCLOINGTIER,AND JOHN IRWIN. Aspect-
oriented programming. In MEHMET AKŞIT AND SATOSHI MAT-
SUOKA, editors, Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP’97), Jyväskylä, Finland,
Lecture Notes in Computer Science, volume 1241, pages 220–242,
New York, NY, 1997. Springer-Verlag.

http://www.javagrande.org/
http://www.cs.ubc.ca/~gregor/papers/kiczales-aosd-2003.ppt
http://www.cs.ubc.ca/~gregor/papers/kiczales-aosd-2003.ppt

BIBLIOGRAPHY 189

[KM05] GREGOR KICZALES AND MIRA MEZINI. Aspect-oriented program-
ming and modular reasoning. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 49–58, New
York, NY, USA, 2005. ACM Press.

[KR05] GÜNTER KNIESEL AND TOBIAS RHO. Generic aspect languages -
needs, options and challenges. In Proceedings of the 2ème Journée
Francophone sur le Développement de Logiciels Par Aspects (JFDLPA
2005). Sep 2005.

[KRH] GÜNTERKNIESEL, TOBIASRHO, AND STEFANHANENBERG. Evolv-
able pattern implementations need generic aspects.

[Kuz04] SASCHA KUZINS. Efficient implementation of around-advice for the
AspectBench Compiler. Master’s thesis, Oxford University, UK,
September 2004.

[Lad03] RAMNIVAS LADDAD. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning, 2003.

[Lea00] DOUG LEA. A Java fork/join framework. In Proceedings of the ACM
2000 conference on Java Grande, pages 36–43. ACM Press, 2000.

[LMGF05] MIKEL LUJÁN, GIBSON MUKARAKATE, JOHN R. GURD, AND T. L.
FREEMAN. DiFoJo: A Java fork/join framework for heterogeneous
networks. In 13th Euromicro Workshop on Parallel, Distributed and
Network-Based Processing (PDP), pages 297–304, 2005.

[LOO01] KARL LIEBERHERR, DOUG ORLEANS, AND JOHAN OVLINGER.
Aspect-oriented programming with adaptive methods. Communi-
cations of the ACM, 44(10):39–41, 2001.

[Lop02] CRISTINA VIDEIRA LOPES. Aspect-Oriented Programming: An his-
torical perspective (what’s in a name?). Technical report, Institute for
Software Research, University of California, Irvine, December 2002.

[Lop04] CRISTINA VIDEIRA LOPES. AOP: A historical perspective (What’s
in a name?). In Filman et al. [FECA04], pages 97–122.

BIBLIOGRAPHY 190

[LS05] RALF LÄMMEL ANDKRISDE SCHUTTER. What does aspect-oriented
programming mean to cobol? In AOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software development,
pages 99–110, New York, NY, USA, 2005. ACM Press.

[LY99] TIM LINDHOLM AND FRANK YELLIN. The Java(TM) Virtual Ma-
chine Specification, Second Edition. Addison-Wesley, http://java.
sun.com/docs/books/vmspec/, 1999.

[Mey88] BERTRANDMEYER. Object-oriented Sofware Construction. Prentice-
Hall, 1988.

[MFG02] JOSÉ E. MOREIRA, GEOFFREY C. FOX, AND VLADIMIRGETOV, edi-
tors. Proceedings of the 2002 joint ACM-ISCOPE conference on Java
Grande. ACM Press, 2002.

[MH02] JEROME MIECZNIKOWSKI AND LAURIE HENDREN. Decompiling
Java bytecode: Problems, traps and pitfalls. In Proceedings of Com-
piler Construction, 11th International Conference, CC 2002, pages
111–127, 2002.

[Mie03] JEROMEMIECZNIKOWSKI. New algorithms for a Java decompiler and
their implementation in Soot. Master’s thesis, McGill University,
Montréal, Québec, Canada, apr 2003.

[MK03] HIDEHIKO MASUHARA AND KAZUNORI KAWAUCHI. Dataflow
pointcut in aspect-oriented programming. LectureNotes inComputer
Science 2895, Proceedings of The First Asian Symposium on Program-
ming Languages and Systems (APLAS’03), pages 105–121, 2003.

[MKL97] A. MENDHEKAR, G. KICZALES, AND J. LAMPING. RG: A case-
study for aspect-oriented programming. Technical Report SPL97-009
P9710044, Palo Alto, CA, USA, February 1997.

[MMG+00] JOSE E. MOREIRA, SAMUEL P. MIDKIFF, MANISH GUPTA, PEDRO V.
ARTIGAS, MARC SNIR, AND RICHARD D. LAWRENCE. Java pro-
gramming for high-performance numerical computing. IBM Systems
Journal, 39(1):21–, 2000.

http://java.sun.com/docs/books/vmspec/
http://java.sun.com/docs/books/vmspec/

BIBLIOGRAPHY 191

[Mon05] ALANMONNOX. Rapid J2EEDevelopment: AnAdaptive Foundation
for Enterprise Applications. Prentice-Hall, 2005.

[Muc97] STEVEN S. MUCHNICK. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[MWB+01] GAIL C. MURPHY, ROBERT J. WALKER, ELISA L. A. BANIASSAD,
MARTIN P. ROBILLARD, ALBERT LAI, AND MIK A. KERSTEN. Does
aspect-oriented programming work? Communications of the ACM,
44(10):75–77, 2001.

[NEF01] PANITI NETINANT, TZILLA ELRAD, AND MOHAMED E. FAYAD. A
layered approach to building open aspect-oriented systems: a frame-
work for the design of on-demand system demodularization. Com-
munications of the ACM, 44(10):83–85, 2001.

[OMB05] KLAUS OSTERMANN, MIRA MEZINI, AND CHRISTOPH BOCKISCH.
Expressive pointcuts for increased modularity. In Proceedings of
the 18th European Conference on Object-Oriented Programming
(ECOOP’05), Lecture Notes in Computer Science, volume 3586,
pages 214–240, 2005.

[OT01] HAROLDOSSHER AND PERI TARR. Using multidimensional separa-
tion of concerns to (re)shape evolving software. Communications of
the ACM, 44(10):43–50, 2001.

[OW99] SCOTT OAKS AND HENRY WONG. Java Threads. O’Reilly, 2nd
edition, 1999.

[Pan98] JAVA GRANDE FORUM PANEL. Making Java work for high-end
computing. Technical report, Java Grande Forum, Orlando, Florida,
November 1998.

[PC01] J. ANDRÉS DÍAZ PACE AND MARCELO R. CAMPO. Analyzing the
role of aspects in software design. Communications of the ACM,
44(10):66–73, 2001.

[PRS04] RENAUD PAWLAK, JEAN-PHILIPPE RETAILLÉ, AND LIONEL SEIN-
TURIER. La programmation orientée aspect pour J2EE. 2004.

BIBLIOGRAPHY 192

[PSR05] RENAUD PAWLAK, LIONEL SEINTURIER, AND JEAN-PHILIPPE RE-
TAILLÉ. Foundations of AOP for J2EE Development. Apress, 2005.

[PTVF93] W.H. PRESS, S.A. TEUKOLSKY, W.T. VETTERLING, AND B.P. FLAN-
NERY. Numerical Recipes in C. Cambridge University Press, Cam-
bridge, UK, 1993.

[PWBK05] DAVID J. PEARCE, MATTHEW WEBSTER, ROBERT BERRY, AND

PAUL H.J. KELLY. Profiling with AspectJ. Submitted to Software–
Practice and Experience, 2005.

[RH98] RAJA VALLEE-RAI AND LAURIE J. HENDREN. Jimple: Simplifying
Java bytecode for analyses and transformations. Technical report,
Sable Group, McGill University, Montreal, Canada, July 1998.

[Rho03] TOBIASWINDELN (RHO). LogicAJ - eine Erweiterung von AspectJ
um logische Meta-Programmierung. Diploma thesis, Computer Sci-
ence Department III, University of Bonn, Germany, Aug 2003.

[Rho04] TOBIASWINDELN (RHO). Static safety for generic aspect languages.
In Student Research Extravaganza. Poster Session. International Con-
ference on Aspect-Oriented Software Development (AOSD’04), 2004,
Lancaster.March 2004.

[RK04] TOBIAS RHO AND GÜNTER KNIESEL. Uniform genericity for as-
pect languages. Technical report, Computer Science Department III,
University of Bonn., December 2004.

[RS05] HRIDESH RAJAN AND KEVIN SULLIVAN. Aspect language features
for concern coverage profiling. In AOSD ’05: Proceedings of the
4th international conference on Aspect-oriented software development,
pages 181–191, New York, NY, USA, 2005. ACM Press.

[SB01] L. A. SMITH AND J. M. BULL. A multithreaded Java Grande bench-
mark suite. In Proceedings of the Third Workshop on Java for High
Performance Computing, June 2001.

[SBO01] L. A. SMITH, J. M. BULL, AND J. OBDRZALEK. A parallel Java Grande
benchmark suite. In Proceedings of the 2001 ACM/IEEE conference
on Supercomputing (SC 2001), pages 97–105, November 2001.

BIBLIOGRAPHY 193

[SGP02] OLAF SPINCZYK, ANDREAS GAL, AND WOLFGANG SCHRÖDER-
PREIKSCHAT. AspectC++: an aspect-oriented extension to the
C++ programming language. In CRPITS ’02: Proceedings of the
Fortieth International Conference on Tools Pacific, pages 53–60, Aus-
tralia, 2002. Australian Computer Society, Inc.

[SGS+05] KEVIN SULLIVAN, WILLIAM G. GRISWOLD, YUANYUAN SONG,
YUANFANG CAI, MACNEIL SHONLE, NISHIT TEWARI, AND

HRIDESH RAJAN. Information hiding interfaces for aspect-oriented
design. In ESEC/FSE-13: Proceedings of the 10th European soft-
ware engineering conference held jointly with 13th ACM SIGSOFT
international symposium on Foundations of software engineering, pages
166–175, New York, NY, USA, 2005. ACM Press.

[SOK+04] TOSHIO SUGANUMA, TAKESHI OGASAWARA, KIYOKUNI
KAWACHIYA, MIKIO TAKEUCHI, KAZUAKI ISHIZAKI, AKIRA

KOSEKI, TATSUSHI INAGAKI, TOSHIAKI YASUE, MOTOHIRO

KAWAHITO, TAMIYAONODERA, HIDEAKI KOMATSU, AND TOSHIO
NAKATANI. Evolution of a Java just-in-time compiler for IA-32 plat-
forms. IBM Journal of Research and Development, 48(5/6):767–795,
2004.

[SOW+95] MARC SNIR, STEVEW.OTTO, DAVIDW.WALKER, JACKDONGARRA,
AND STEVENHUSS-LEDERMAN. MPI: The Complete Reference. MIT
Press, Cambridge, MA, USA, 1995.

[SR02] STANLEY M. SUTTON AND ISABELLE ROUVELLOU. Modeling of
software concerns in Cosmos. In Proceedings of the 1st international
conference on Aspect-oriented software development, pages 127–133.
ACM Press, 2002.

[SSTP02] TODD SMITH, SURESH SRINIVAS, PHILIPP TOMSICH, AND JINPYO
PARK. Experiences with retargeting the Java HotSpot(tm) virtual
machine. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS’02), pages 119–127, 2002.

[Sul01] GREGORY T. SULLIVAN. Aspect-oriented programming using re-
flection and metaobject protocols. Communications of the ACM,
44(10):95–97, 2001.

BIBLIOGRAPHY 194

[Thi02] G.K. THIRUVATHUKAL. Java atmiddle age: enabling Java for compu-
tational science. Computing in Science & Engineering [see also IEEE
Computational Science and Engineering], 4(1):74–84, 2002.

[Tol] ROBERT TOLKSDORF. Programming Languages for the Java Virtual
Machine. http://www.robert-tolksdorf.de/vmlanguages.

http://www.robert-tolksdorf.de/vmlanguages

	Contents
	List of Figures
	List of Listings
	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Software engineering in scientific computing
	Aspect-Oriented Programming
	Concerns and software design
	Crosscutting concerns and aspects

	Code-tangling in scientific software
	Explicit parallelisation
	Compiler directives for parallelism
	Compiler directives for sparse matrices
	Comparing three versions of the same application
	Separation of concerns in scientific software

	Java-based numerical computing
	Challenges and contributions
	Aspects for parallel computing
	AspectJ and beyond: join points for complex behaviours

	Outline

	Aspect-Oriented Programming
	Introduction to Aspect-Oriented Programming
	Motivation
	Concepts
	Languages and tools

	Performance as an aspect
	Aspects for loop fusion
	Aspects for sparse matrix code

	Summary

	Join points for parallelism in AspectJ
	Aspects for the Java-Grande Forum benchmark suite
	Minor refactoring
	Major refactoring
	Moderate refactoring
	Aspects for the JGF benchmarks: summary

	An object-oriented model for loops
	Model RectangleLoopA
	Model RectangleLoopB
	Model RectangleLoopC
	Object-oriented loops: summary

	Summary

	A join point for loops in AspectJ
	The loop join point model
	From source or from bytecode
	Shadow matching: recognising the loops
	Dominators, back edges and natural loops
	Loops in the general case
	Loops with a unique successor node
	Loops with a unique exit node
	Summary

	Context exposure
	Iteration space
	Loop iterating over a range of integers
	Loop iterating over an Iterator

	``Iterable'' data

	Loop selection
	Issues related to exceptions
	Implementation in abc: LoopsAJ
	Shadow matching
	Context exposure and transformations
	Exposing the iteration space context
	Exposing the originating ``iterable'' data context
	Writing pointcuts

	Limitations

	Join point reflection and loop analyses
	Aspects for parallelisation
	Related topics
	``Loop-body'' join point
	``If-then-else'' join point

	Summary

	Applications and performance evaluation
	Aspects for flexibility in implementing parallelisation strategies
	Aspects for refactored code, using AspectJ
	Aspects for the join point for loops, using LoopsAJ
	Experimental environment
	Machines
	Java virtual machines
	Compilers

	Test-case: data-based vs. cflow-based selection in LoopsAJ
	Test-case: successive over-relaxation
	AspectJ approach: object-oriented loops
	Cost of refactoring
	Cost of parallelising

	LoopsAJ approach
	Cost of weaving
	Cost of parallelising

	Performance comparison

	Test-case: the Crypt application
	AspectJ approach: minor refactoring
	LoopsAJ approach
	Performance comparison

	Summary

	Conclusions
	Contributions
	Contributions to scientific computing
	Contributions to aspect-oriented programming
	Performance evaluation

	Critique
	Related and future work

	AspectJ syntax guide
	General structure of aspects
	Inter-type declarations
	Pointcut descriptors
	Advice

	A source-code and structural approach
	Join point as point in the structure of the program
	Tools
	JTransformer
	LogicAJ

	Loop fusion
	Aspects for refactoring

	Listings
	Object-oriented loops
	RectangleLoopA
	RectangleLoopB
	RectangleLoopC

	Bibliography

